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Abstract—In this paper, a joint optimization of sensor acti-
vation and mobile charging scheduling for industrial wireless
rechargeable sensor networks (IWRSNs) is studied. In the con-
sidered model, an optimal sensor set is selected to collaboratively
execute a bundle of heterogeneous tasks of production-line
monitoring, meeting the quality-of-monitoring (QoM) of each
individual task. There is a mobile charger vehicle (MCV) which is
scheduled for recharging sensors before their charging deadlines
(i.e., the time instant of running out of their energy). Our goal
is to jointly optimize the sensor activation and MCV scheduling
for minimizing the energy consumption of the entire IWRSN,
subjected to tasks’ QoM requirements, sensor charging deadlines
and the energy capacity of the MCV. Unfortunately, solving this
problem is non-trivial, because it involves solving two tightly
coupled NP-hard problems. To address this issue, we design an
efficient algorithm integrating deep reinforcement learning and
marginal product based approximation algorithm. Simulations
are conducted to evaluate the performance of the proposed
solution and demonstrate its superiority over counterparts.

I. INTRODUCTION

W ITH the development of intelligent manufacturing,
industrial wireless sensor networks (IWSNs) have been

widely used for the automatic control of industrial production
process and the monitoring of various parameters. Never-
theless, wireless sensor nodes are severely energy-limited,
which hinders the wide application of IWSNs. To tackle such
sensor energy provisioning problem, researchers studied how
to reduce the energy consumption by optimizing wake-up and
sleeping scheduling, data gathering and routing strategies, etc.
to prolong the lifetime of IWSNs. However, these methods
cannot fundamentally address the shortage of total energy
capacities of sensors. Therefore, recent advances of wireless
energy transfer technology have inspired the emergence of
industrial wireless rechargeable sensor networks (IWRSNs)
[1], in which mobile charger vehicles (MCVs) are employed
to travel around and replenish energy for sensors without
interconnecting wires.

Although IWRSNs can obviously outperform traditional
IWSNs in alleviating the heavy burden of energy consumption,
there are still some open problems remaining. In practice,
sensing tasks for production-line monitoring may be highly
heterogeneous in terms of quality of monitoring (QoM) re-
quirements, locations and types. Besides, industrial sensors
may also be heterogeneous in terms of sensing radius, types,

etc. Therefore, it is crucial to select the optimal set of sensors
to activate for collaboratively and continuously execute all
monitoring tasks while meeting the QoM of each task, and
such problem becomes more complicated since sensors in
IWRSNs are rechargeable.

Furthermore, industrial sensors must keep up high-intensity
work for long periods and continuously feed data back to
controllers or actuators. For example, while a cutting machine
is working, industrial camera sensors must collaboratively
monitor the position of cutters in real-time and send out the
data in a timely manner. Any unpredictable sensor failure
may cause serious consequences, e.g., unexpected damages
and casualties. Hence, in order to guarantee that all activated
sensors can work continuously during the monitoring period,
the MCV in IWRSNs should be scheduled to recharge sensors
before their charging deadlines (i.e., the instant of running out
of their energy). However, the energy capacity of MCV is also
limited, and thus the scheduling of MCV is not only subjected
to the charging deadlines of sensors, but also its own energy
capacity constraint.

To address the aforementioned issues, in this paper, we
study a joint optimization of sensor activation and mobile
charging scheduling for IWRSNs. The goal is to jointly opti-
mize the sensor activation and MCV scheduling for minimiz-
ing the energy consumption of the considered IWRSN, sub-
jected to tasks’ QoM requirements, sensor charging deadlines
and energy capacity of the MCV. In the considered model, the
MCV starts from the depot, travels along the scheduled path
and returns to the depot at the end of a trip. While traveling
on its path, the MCV charges activated sensors before their
charging deadlines. To solve such joint sensor activation and
mobile charging scheduling problem, we propose an efficient
algorithm integrating deep reinforcement learning (DRL) and
marginal product based approximation algorithm.

The main contributions of this paper are summarized in the
following.
• A joint optimization of sensor activation and mobile

charging scheduling for IWRSNs is formulated, where
the objective is to minimize the energy consumption of
the entire network.

• An efficient algorithm, called joint sensor activation and
charging scheduling algorithm (JSACS), is proposed inte-
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Fig. 1. An illustration of the considered IWRSN.

grating DRL and marginal product based approximation
algorithm, which jointly optimizes the sensor activation
and the MCV’s charging route scheduling.

• Simulations are conducted to show the superiority of the
proposed JSACS over counterparts.

The rest of this paper is organized as follows: Section II
presents the system model and the problem description. In
Section III, an efficient solution for the problem is proposed.
Simulation results are provided in Section IV, followed by
conclusions in Section V.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. Network Model
Consider an IWRSN, as illustrated in Fig. 1, consisting

of a group of tasks for production-line monitoring, a set of
stationary industrial rechargeable sensors S with cardinality of
|S| = S uniformly distributed in a certain area, and an MCV
which starts working from a depot deployed at the center.

At the beginning of a monitoring period, the industrial
controller declares its a bundle of monitoring tasks Z =
{zmj |∀m ∈ {1, 2, ...,M},∀j ∈ {1, 2, . . . , J}} to the IWRSN,
where m and j stand for the index of the monitoring task
and its corresponding type, respectively. For meeting the QoM
requirements of these tasks, a group of sensors H ⊆ S should
be activated to collaboratively execute the monitoring tasks.

In practice, sensors’ sensing radius are limited, which can
be denoted by Ri, i ∈ S. In addition, different types of sensors
can only execute tasks fitting their types, and thus we define
Sj as the set of sensors specialized in task type j. Obviously,
each sensor i ∈ S can only execute task zmj ∈ Z that is
located within its sensing radius Ri and falls into its targeted
type. In each monitoring period, each sensor is able to execute
at most one task. In this paper, we adopt the probabilistic
sensing coverage (PSC) model [2], [3], and denote pi,zmj as
the detection probability of zmj by sensor i, which can be
calculated as

pi,zmj =

{
e−αi·dist(i,zmj ), if dist

(
i, zmj

)
≤ Ri, i ∈ Sj ,

0, otherwise,
(1)

where αi represents the intensity coefficient related to the
sensor i’s physical characteristics, and dist

(
i, zmj

)
indicates

the Euclidean distance between sensor i and task zmj [2]–
[4]. The collaborative coverage probability of sensor set H to
the monitoring task zmj is required to be larger or equal to
P demandzmj

, i.e.,

1−
∏
i∈H

(1− pi,zmj ) ≥ P demandzmj
, (2)

where P demandzmj
measures the minimum QoM demanded by

each task zmj . For sensors that are activated to execute tasks,
they should work continuously during the monitoring period
due to the application for industrial monitoring. However,
the battery capacity of each sensor Ecapacityi is limited, and
once the battery is completely consumed, the sensor stops
working. To this end, the MCV is employed with energy
capacity EMCV which travels starting at the depot, charges
dying sensors inH and returns to the depot at the end. Because
of the hardware limitation, the MCV can only recharge one
sensor at a time. We denote Einitiali as the initial energy of
each sensor i ∈ S at the beginning of the monitoring period.
For simplicity, assume that for each sensor i ∈ S , Einitiali is
sufficiently large to guarantee that Einitiali ≥ Emini , where
Emini is the minimum energy for i ∈ S to be operational.
Here, we characterize the energy consumption rate of each
sensor i ∈ S by Econsumei . Note that it is possible that some
sensors may have sufficiently enough energy so that they can
work continuously during the monitoring period and are not
necessary to be recharged by the MCV. We classify these
sensors into the set H0 ⊆ H, and categorize the others which
have to be recharged by the MCV into set H1 = H\H0.
Obviously, the amount of energy that sensor i ∈ H1 required
to be recharged can be calculated as

Edemandi = T ·Econsumei − (Einitiali −Emini ),∀i ∈ H1, (3)

where T is the time duration of each production-line monitor-
ing task period.

For ensuring that all activated sensors can execute tasks
continuously, the MCV should charge the sensors in set H1

before their charging deadline ddli, i ∈ H1, which can be
calculated as

ddli =
Einitiali − Emini

Econsumei

,∀i ∈ H1. (4)

Besides, let us denote the charging route of the MCV by
a vector LH1 = {π0, π1, ..., πg, ..., π|H1|, π|H1|+1}, where πg
signifies the gth visiting target (i.e., the targeted sensor for
recharging). Specifically, π0 = π|H1|+1 = 0 indicates that
the MCV travels starting from the depot and returns at the
end, and πg ∈ H1 for g = 1, . . . , |H1|. Note that, each
sensor i ∈ H1 can only be visited once, that is πg 6= πg′

for g 6= g′. Furthermore, we define the arrival time of the
MCV at a visiting target πg as Aπg

. Clearly, Aπg
depends

on the arrival time of the last visited target πg−1, the service
time (i.e., battery recharging time) for the target πg−1, and the



traveling time of the MCV from πg−1 to πg . Hence, Aπg
can

be expressed as

Aπg = Aπg−1 +
Edemandπg−1

ε
+
dist (πg−1, πg)

v
,∀πg ∈ LH1 , (5)

where ε and v stand for the the charging efficiency and the
velocity of the MCV, respectively. Following the definition in
(3), Edemandπg

depicts the amount energy that the target πg (or
sensor πg) demands for recharging. In particular, Edemandπ0

=
Edemandπ|H1|+1

= 0, and Aπ0
= 0.

In this paper, we assume that when a sensor i ∈ H
has been fully recharged, it can work continuously without
interruption during the monitoring period, namely Ecapacityi ≥
T · Econsumei .

B. Problem Description

The energy consumption of an IWRSN includes the energy
consumption of the MCV and the energy consumption of
sensors in H for executing tasks. Although the energy cost
of the MCV further consists of both the traveling energy
cost and the recharging energy cost, all recharging energy
will be consumed completely by sensors for a higher energy
utilization efficiency, and thus such term is implied by the
energy cost of sensors in H. Therefore, the total energy
consumption of an IWRSN Etotal

(
H,LH1

)
can be formulated

as

Etotal(H,LH1)=

|H1|∑
g=0

γ · dist (πg, πg+1)+
∑
i∈H

T · Econsumei ,

where γ represents the energy consumption rate from MCV’s
travelling.

Accordingly, a joint optimization of sensor activation (i.e.,
the optimal set of sensors to activate H) and mobile charging
scheduling (i.e., the optimal charging route LH1 ) for the
IWRSN can be formulated as

[P1] : min
H,LH1

Etotal(H,LH1) (6)

s.t., 1−
∏
i∈H

(1− pi,zmj ) ≥ P demandzmj
,∀zmj ∈ Z, (7)

Aπg ≤ ddlπg , g=1, . . . |H1|, (8)
πg 6= πg′ , g 6= g′; g=1, . . . |H1|, g′=1, . . . |H1|, (9)
|H1|∑
g=0

γ·dist (πg, πg+1)+

|H1|∑
g=1

Edemandπg
≤ EMCV , (10)

π0 = 0, π|H1|+1 = 0, (11)
H ⊆ S, (12)
H = H0 ∪H1, (13)

LH1 = {π0, π1, ..., πg, ..., π|H1|, π|H1|+1}, (14)

where constraint (7) states that each monitoring task’s QoM
requirement should be met; constraint (8) ensures that the
MCV can always be scheduled to arrive before each sensor’s
charging deadline expires; constraint (9) means that the MCV
should not visit the same sensor more than once in the

scheduled charging route; constraint (10) indicates that the
total energy consumption of the MCV should be less than or
equal to its energy capacity EMCV ; constraint (11) illustrates
that the MCV starts at the depot and returns to the depot at
the end. In the following section, we will propose an efficient
algorithm to derive the solution of this joint optimization
problem.

III. JOINT SENSOR ACTIVATION AND MOBILE CHARGING
SCHEDULING

A. Hardness Analysis

From the problem formulation [P1], we can observe that
the joint optimization of sensor activation and mobile charg-
ing scheduling actually includes two-layer optimizations. The
upper layer optimization mainly addresses the sensor set
selection with tasks’ QoM constraints, where the objective is
to minimize the energy consumption of the activating sensor
set H. And the lower layer optimization aims to determine the
charging route scheduling for the MCV by taking into account
sensors’ charging deadlines, where the objective is to minimize
the traveling energy consumption of the MCV. Indeed, these
two optimization problems are tightly coupled.

Given the charging route LH1 of the MCV, we can get the
set of candidate sensors S ′ ⊆ S, where all sensors in S ′ have
sufficient energy to execute monitoring tasks continuously
during the monitoring period. The upper layer sensor set
selection problem turns to be a variant generalized assignment
problem, which is NP-hard:

[P2] : min
H

∑
i∈H

T · Econsumei

s.t., (7), (13) and H ⊆ S
′
,

While given the set H, the set H1 can also be obtained and
the lower layer mobile charging route scheduling problem can
be seen as a reduced traveling salesman with time windows
problem, which is NP-hard:

[P3] : min
LH1

|H1|∑
g=0

γ · dist (πg, πg+1)

s.t., (8), (9), (10), (11) and (14)

Based on the above analyses, it is obvious that solving the
joint optimization of sensor activation and mobile charging
scheduling for the IWRSN directly is very challenging be-
cause: i) both the upper layer sensor selection optimization,
and the lower layer charging route scheduling problem are
NP-hard; ii) the upper and lower layer problems are tightly
coupled (i.e., the input of the lower layer problem depends on
the output of the upper layer one, while the optimization of the
upper problem would impact the lower layer problem). In the
following subsection, we first solve the MCV charging route
scheduling problem by applying a DRL-based approach. Then,
we jointly optimize the sensor set selection and the MCV
charging route scheduling by utilizing a marginal product
based approximation algorithm.



B. DRL Algorithm for Mobile Charging Route Scheduling

Here, a modified pointer network similar to that in [5] is
introduced to model the lower layer problem [P3], and the
Actor-Critic algorithm is utilized for training.

First, we introduce the input structure of the neural network.
At each decoding step g = 0, 1, . . . , |H1| + 1, let the set
of inputs be Xg = {x0g, x1g, . . . x

|H1|
g }, where |H1| indicates

the number of targets that need to be recharged. Each xig is
represented by a sequence of tuples {xig = (si, dig)}, where si

and dig stand for the static and dynamic elements of the input,
respectively. It is worth noting that dynamic elements of each
input are allowed to alter between the decoding steps, while
the static elements are invariant. For example, si is the attribute
of the target i, including target i’s location and the charging
deadline, which does not change during the charging process.
However, the charging requirement of the target i becomes 0
after charging by the MCV. Therefore, xig can be viewed as a
vector of features that depicts the state of i at decoding step g.
Particularly, x0g represents attributes of the depot, which is set
to locate at the center of the area, and its charging deadline is
infinite and it has no charging demand.

The output of the model is a permutation of the sensors
and the depot, LH1 = {π0, π1, ..., π|H1|, ..., π|H1|+1}. At each
decoding step g = 0, 1, . . . , |H1| + 1, πg points to a sensor
or the depot in Xg , determining the next visiting target. The
states of sensors in Xg are updated every time after a target has
been visited. When the charging requirements of all sensors
are satisfied, the process will be terminated.

To map input X0 to output LH1 , the probability chain rule
is utilized:

P
(
LH1 | X0

)
=

|H1|∏
g=1

P (πg+1 | π0, π1, · · · , πg, Xg) . (15)

Firstly the depot is selected as π0. Eq. (15) provides the
probability of selecting the next visiting target according to
π0, π1, . . . , πg , i.e., the already visited targets. Then a modified
pointer network similar to that in [5] is used to model (15).
Its basic structure is the sequence-to-sequence model [6], a
powerful model in the machine translation field, which maps
one sequence to another. The sequence-to-sequence model
consists of two recurrent neural networks (RNNs), namely
encoder and decoder.

Encoder encodes the input sequence into a code vector
which contains knowledge of the input. Since the attributes
of the targets convey no sequential information and the order
of targets in the inputs is meaningless, RNN is not necessary
to be utilized in the encoder. Therefore, a simple embedding
layer is adopted to encode the inputs which decreases the
computational compilations without decreasing the efficiency
[5]. In this work, we apply a 1-dimensional (1-D) convolution
layer to encode the inputs to a high-dimensional vector [5]
(d = 128 in this work). The parameters of the 1-D convolution
layer are shared among the inputs.

Different from the encoder, we use RNN to model the
decoder network since we need to store the knowledge of

Algorithm 1: Actor-Critic training algorithm
Output: The optimal model M∗ = [θ∗, φ∗].

1 Initialize: Let the actor network with random weights θ and critic
network with random weights φ;

2 for iteration ← 1, 2, . . . do
3 generate F problem instances from {ΦM1 ,ΦM2 , . . . ,ΦMM

};
4 for c← 1, . . . , F do
5 t← 0;
6 while not terminated do
7 select the next target πcg+1 according to

P
(
πcg+1|πc1, . . . , πcg , Xc

g

)
;

8 Update Xc
g to Xc

g+1 leaving out the visited targets;

9 compute the reward Rc ;

10 dθ ← 1
F

∑F
c=1

(
Rc − V

(
Xc

0 ;φ
))
∇θ logP

(
Y c | Xc

0

)
;

11 dφ← 1
F

∑F
c=1∇φ

(
Rc − V

(
Xc

0 ;φ
))2;

12 θ ← θ + ηdθ;
13 φ← φ+ ηdφ;

14 Determine θ∗ = θ, φ∗ = φ.

previous steps π0, π1, · · · , πg to assist for obtaining πg+1.
The hidden state of RNN decoder dg can memorize the
previously selected visited targets. Then dg is combined with
the encoding of the inputs ρ0g, ρ

1
g, . . . ρ

|H1|
g to calculate the

conditional probability P (πg+1 | π0, π1, · · · , πg, Xg).
The attention mechanism is utilized to calculate the degree

of correlation of each input to the decoding step g. More
attention is given to the most relevant one which is more
likely to be selected as the next target. The calculation can be
expressed as

uig = wT tanh
(
W1ρ

i
g +W2dg

)
, i ∈ (0, 1, ..., |H1|) ;

P (πg+1 | π0, π1, · · · , πg, Xg) = softmax
(
uig
)
,

where w, W1, W2 are learnable parameters. For each target
i, its uig is computed by dg and its encoder hidden state ρig .
The softmax operator is used to normalize u0g, u

1
g, . . . , u

|H1|
g ,

and probability for selecting each target i at step g can then
be obtained. In this paper, the greedy decoder is utilized to
select the next target.

We adopt the well-known Actor-Critic method to train the
network. The method introduces two networks that require to
be trained: i) an actor network, which is the pointer network in
this work, is used to calculate the probability distribution for
choosing the next target; and ii) a critic network that evaluates
the expected reward given a specific problem state. In addition,
the critic network uses the same architecture as the pointer
network’s encoder which maps the encoder hidden state into
the critic output. However, during training, the model selects
the next target by sampling from the probability distribution
instead of choosing the target with the maximum probability.

The training is conducted in an unsupervised way and
the training procedure is presented in Algorithm 1. Dur-
ing the training process, we generate instances from dis-
tributions {ΦM1

,ΦM2
, . . . ,ΦMM

}, where M signifies dif-
ferent input features of the targets, i.e, the targets’ loca-
tions, charging deadlines, etc. F instances are sampled from
{ΦM1

,ΦM2
, . . . ,ΦMM

} for training the actor and critic net-



Algorithm 2: Joint Sensor Activation and Charging
Scheduling Algorithm (JSACS)

Input: Scandidatezmj
= {i|pi,zmj 6= 0, ∀i ∈ S},Scandidate =∑

zmj ∈Z
Scandidatezmj

,Zunsatisfied = Z .

Output: H, LH1 .
1 Initialize: Let H0 = ∅,H1 = ∅,H = ∅, EtravelMCV (H1) = 0;
2 while Zunsatisfied is nonempty do
3 for each i ∈ Scandidate do
4 if Einitiali − Emini ≥ T · Econsumei then
5 EtravelMCV (H1 ∪ {i}) = EtravelMCV (H1);

6 else
7 Call the model M∗ = [θ∗, φ∗] in algorithm 1 to get a

charging route LH1∪{i} which meets each sensor’s
charging deadline (If there is no charging route that
meets the sensor’s charging deadline or the energy
consumption of the MCV exceeds EMCV , delete
the sensor i from Scandidate.), then compute the
energy consumption of the charging route
EtravelMCV (H1 ∪ {i});

8 iselected =

argmax
i∈Scandidate

{
(1−

∏
i′∈H∪{i}(1−pi′,zm

j
))−(1−

∏
i′∈H(1−pi′,zm

j
))

Etotal(H∪{i},LH1∪h)−Etotal(H,LH1)
,∀zmj ∈ Z},

Update H = H∪ {iselected}, EtravelMCV (H1) =
EtravelMCV (H1 ∪ {iselected});

9 if Einitialiselected
− Eminiselected

≥ T · Econsumeiselected
then

10 Update H0 = H0 ∪ {iselected};
11 else
12 Update H1 = H1 ∪ {iselected};

13 for each zmj ∈ Zunsatisfied do
14 if 1−

∏
i∈H(1− pi,zmj ) ≥ P demandzmj

then

15 Update Scandidate = Scandidate\{Scandidatezmj
},

Zunsatisfied = Zunsatisfied\{zmj };

16 Update Scandidate = Scandidate\{iselected};
17 return H,LH1 .

works with parameters θ and φ. For each instance, the actor
network with current parameters θ produces the permutation of
targets, and the corresponding reward can be obtained. Then
policy gradient is computed in line 10 to update the actor
network. Meanwhile, the critic network is updated in line 11
by reducing the difference between the observed rewards and
the approximated rewards.

C. Joint Sensor Activation & Charging Scheduling Algorithm

Based on the MCV’s traveling energy consumption calcu-
lated by the trained model M∗, the core idea is iteratively
selecting a new sensor i which has the largest marginal product
[7]. Marginal product is a concept in economics, which refers
to the increase in the total output brought about by adding
a unit of an input, assuming that the quantities of other
inputs are maintained as constant [7]. In this paper, the energy
consumption of the IWRSN corresponds to the adding input,
and the QoM obtained by all tasks corresponds to the output.
Then, in each iteration, a new activating sensor should be

TABLE I
MAIN SIMULATION PARAMETERS.

Parameter Value
Sensor types [0,1,2,3]
Task types [0,1,2,3]
Number of sensors 800 (number of each type: 200)
Number of tasks 40 (randomly chosen over [0,1,2,3])
Area dimensions 80 m × 80 m
Sensing radius Ri randomly chosen over [10,15,20,25] m
Energy capacity Ecapacityi 10.8 kJ
Energy consumption rate Econsumei 0.5 J/s
Minimum energy Emini 540 J
Initial energy Einitiali randomly over [1080,3240] J
Intensity coefficient αi randomly over [0.1,0.3]
QoM demand P demandzmj

randomly over [0.5, 0.7]

Charging efficiency ε 15 W
Velocity v 2 m/s
Traveling energy consumption γ 20 J/m
Energy capacity of MCV EMCV 128 kJ
Time duration of monitoring period T 1 hour

selected according to:

arg max
i∈Scandidate

{
(1−

∏
i′∈H∪{i}(1−pi′,zmj ))−(1−

∏
i′∈H(1−pi′,zm

j
))

Etotal(H∪{i},LH1∪h)−Etotal(H,LH1)
,∀zmj ∈ Z},

where h indicates whether this sensor needed to be recharged
or not:

h =

{
{i}, if Einitiali − Emini < T · Econsumei ,

∅, otherwise.

Initially, H = ∅, and the details of the proposed JSACS
algorithm can be found in Algorithm 2.

IV. SIMULATION RESULTS

In this section, simulations are conducted to numerically
evaluate the performance of the proposed JSACS for problem
P1. Table I lists the values of main simulation parameters.
Similar settings have been employed in the literature [8].
Note that some parameters may vary according to different
evaluation scenarios.

For effective and fair comparisons, we introduce the greedy
algorithm (GRE) and an existing algorithm named reward-cost
ratio algorithm (RC-ratio) [9]. GRE greedily selects sensors
intoH that have maximum coverage probability until all tasks’
QoM are satisfied and then applies the earliest deadline first
policy (EDF) [10] to derive the charging tour of the MCV for
H1. For EDF, MCV always selects a sensor with the earliest
charging deadline as its next serving target. Besides, both the
charging deadlines of sensors in H1 and the energy capacity of
MCV are taken into account when selecting each sensor. RC-
ratio selects sensors into H according to the marginal product
function while the MCV’s charging route is determined by
EDF.

Fig. 3 demonstrates the superiority of the proposed JSACS
in terms of the entire network energy consumption. It is shown
that, the energy consumption of the entire network increases
monotonically with the number of tasks. This is because with
the growth of the number of tasks, more sensors need to be
activated, leading to more energy consumption. Meanwhile,
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Fig. 3. Comparison of energy consumption of
the entire IWRSN w.r.t. number of tasks.
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Fig. 5. Comparison of energy consumption of
the entire IWRSN w.r.t. network sizes.

with more sensors being activated, a growing number of them
need to be recharged within this area, resulting in the increase
of the MCV’s traveling energy consumption. Additionally, it
can be observed that the proposed JSACS outperforms GRE
and RC-ratio. The reason is that GRE iteratively selects a
sensor with maximum coverage probability while ignores the
sensor selection impacts on the total energy consumption. RC-
ratio outperforms GRE since RC-ratio selects a sensor with
maximum marginal product in each iteration. The proposed
JSACS achieves the best performance because it does not
only select a sensor with the largest marginal product in each
iteration, but also determines the charging route of the MCV
by a well DRL model instead of EDF.

Fig. 4 compares the energy utilization efficiency of GRE,
RC-ratio and proposed JSACS. The energy utilization effi-
ciency refers to the proportion of the energy for recharging
sensors to total MCV energy consumption. It is shown that
the proposed JSACS performs better than GRE and RC-ratio.
The reason is that the proposed JSACS consider the two-
layer optimization simultaneously when selecting a sensor.
In addition, the objective of the trained DRL model is to
minimize the traveling energy consumption of the MCV while
meeting the charging deadlines of sensors. However, the EDF
applied in GRE and RC-ratio does not consider the traveling
length of the MCV, and it simply recharge sensors in a timely
manner. Therefore, the proposed JSACS can prompt the MCV
to utilize more energy for task execution to increase the QoM
of tasks, rather than wasting energy on traveling.

Fig. 5 shows that the energy consumption of the entire
network of these three algorithms increases almost linearly
with the network size. The reason is that the larger network
size makes the sensor deployment more sparse, leading to
more energy consumption on traveling. In addition, a larger
network size also makes the distance between the sensor and
its monitoring tasks larger, and the detection probabilities of
sensors decrease, so that more sensors need to be activated to
execute tasks, inducing more energy consumption of sensors.
Intuitively, the proposed JSACS outperforms GRE and RC-
ratio, benefiting from integrating DRL and marginal product
based approximation algorithm to jointly solve the sensor
activation and charging scheduling problem.

V. CONCLUSION

In this paper, the joint optimization of sensor activation
and mobile charging scheduling for IWRSNs has been stud-
ied. By considering the objective of minimizing the energy
consumption of the entire network subjected to tasks’ QoM
requirements, sensor charging deadlines and the energy ca-
pacity of the MCV, an efficient algorithm named JSACS is
proposed integrating DRL and marginal product based approx-
imation algorithm. Simulation results show that, compared to
counterparts, the proposed algorithm can decrease the energy
consumption of the entire IWRSN and improve the energy
utilization efficiency of the MCV.
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