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Abstract—In this paper, an energy efficient scheduling problem
for multiple unmanned aerial vehicle (UAV) assisted mobile
edge computing is studied. In the considered model, UAVs act
as mobile edge servers to provide computing services to end-
users with task offloading requests. Unlike existing works, we
allow UAVs to determine not only their trajectories but also
decisions of whether returning to the depot for replenishing
energies and updating application placements (due to limited
batteries and storage capacities). Aiming to maximize the long-
term energy efficiency of all UAVs, i.e., total amount of offloaded
tasks computed by all UAVs over their total energy consumption,
a joint optimization of UAVs’ trajectory planning, energy renewal
and application placement is formulated. Taking into account
the underlying cooperation and competition among intelligent
UAVs, we reformulate such problem as three coupled multi-agent
stochastic games, and then propose a novel triple learner based
reinforcement learning approach, integrating a trajectory learner,
an energy learner and an application learner, for reaching equi-
libriums. Simulations evaluate the performance of the proposed
solution, and demonstrate its superiority over counterparts.

I. INTRODUCTION

Recently, the multi-unmanned aerial vehicle (UAV) assisted
mobile edge computing (MEC) has attracted a myriad of
attentions due to its high-flexibility in providing MEC services
for end-users (e.g., IoT devices). Particularly, UAVs with
computing resources can dynamically adjust their positions
to get close to end-users or fly to the areas that cannot be
covered by fixed MEC infrastructures [1]. Thus, compared to
the traditional MEC system, the multi-UAV assisted MEC can
provide better quality of experience for end-users [2], [3].

Although the multi-UAV assisted MEC is envisioned as
a light-weight but highly efficient paradigm for alleviating
computation burdens on end-users, it also suffers several inher-
ent restrictions. For instance, computing tasks offloaded from
different end-users are required to be processed by specific ser-
vice applications, while the limited storage capacities of UAVs
impede their abilities to store all applications. Additionally,
the limited energy capacities of UAVs also hinders the imple-
mentation of this paradigm in providing the long-term MEC
services. Recent research efforts in this area include trajectory
optimization [4], [5], service caching [6], UAV deployment
[7], [8], etc. Nevertheless, there are still some critical issues,
especially how UAVs’ installed applications should be updated
(with severely restricted wireless backhauls) and how UAVs’
energy replenishment should be jointly scheduled, which are
of great importance but have not yet been well investigated.

In this paper, we study a joint optimization of trajectory
planning, energy renewal, and application placement for multi-
UAV assisted MEC to maximize the long-term energy effi-
ciency of all UAVs, i.e., the total amount of offloaded tasks
computed by all UAVs over their total energy consumption,
when providing MEC services. Specifically, in the considered
system, each UAV working over a target region has to decide
its actions after finishing the last one, i.e., a flight direction
for serving IoT devices in other areas or returning back to the
depot for replenishing its energy and simultaneously updating
its application placement (through wired connections), with
the aim of maximizing the long-term energy efficiency of
all UAVs. Since UAVs are intelligent, we allow each of
them to make its own decisions while regulate the underlying
cooperation and competition among them. Additionally, we
take into account the uncertainty that the future environment
information (e.g., positions and task requirements of IoT
devices) is unavailable to UAVs. To this end, we reformulate
the joint optimization problem as three coupled multi-agent
stochastic games, namely, trajectory planning stochastic game
(TPSG), energy renewal stochastic game (ERSG) and appli-
cation placement stochastic game (APSG), and then propose
a novel triple learner based reinforcement learning (TLRL)
approach to obtain corresponding equilibriums of these games.

The main contribution of this paper are in the following.

• A joint optimization of trajectory planning, energy re-
newal and application placement for multi-UAV assisted
MEC is formulated, where the objective is to maximize
the long-term energy efficiency of all UAVs.

• Observing the underlying cooperation and competition
among UAVs, the optimization problem is reformulated
as three coupled multi-agent stochastic games, i.e., TPSG,
ERSG and APSG, and then a novel approach, called
TLRL, is proposed to derive corresponding equilibriums.

• Extensive simulations are conducted to show the superi-
ority of the proposed TLRL approach over counterparts.

The rest of this paper is organized as follows: Section II
introduces the system model and problem formulation. In
Section III, a problem reformulation based on multi-agent
stochastic game is proposed and analyzed, along with the
developed TLRL approach. Simulation results are provided
in Section IV, followed by the conclusion in Section V.



UAV 1

UAV 2 UAV 3
UAV 4

Depot
Remaining energy of the UAV

Applications

Offloading to the UAV

Requested tasksMovement of the UAV

Charging and updating 

applications at the UAV

Interference to the UAV

Coverage of the UAV

Fig. 1: An illustration of considered multi-UAV assisted MEC.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

Consider a multi-UAV assisted MEC system deployed in a
target region, as illustrated in Fig. 1, consisting of a group
of heterogeneous UAVs (acting as mobile edge servers) M
with cardinality of |M| =M and a set of randomly scattered
IoT devices N with cardinality of |N | = N . There is a
depot located at the edge of the target region, which can be
used by UAVs for both energy replenishment and application
placement through wired connections. A time-slotted operation
framework is studied, in which we define t ∈ {1, 2, ..., T} as
the index of time slot. The target region is equally divided
into small squared grids with the side length of q, and similar
to [9], we assume that the downlink transmission range of
each UAV is

√
2
2 q, which totally covers a grid (for feeding

back computation outcomes). All IoT devices are required
to offload their tasks to their associated UAVs via uplink
communications using the same frequency band B, and the set
of IoT devices served by (or associated with) a certain UAV
m is denoted by Gm ⊆ N . The horizontal coordinates of IoT
device n ∈ N and UAV m ∈M at time slot t are represented
as In(t) = (xIn(t), y

I
n(t)) and Um(t) = (xUm(t), yUm(t)),

respectively. Then, the distance of IoT device n ∈ N and
UAV m ∈M at time slot t can be expressed as

dm,n(t) =
√

(xUm(t)− xIn(t))2 + (yUm(t)− yIn(t))2 +H2,

where H denotes a fixed flight altitude of all UAVs. Following
the literature [10], the line-of-sight (LoS) probability between
IoT device n ∈ Gm and UAV m ∈ M at time slot t is given
by δm,n(t) = a · exp(−b(arctan(H/dm,n(t))− a)), where a
and b are constant values depending on the environment. Then,
the path loss between IoT device n ∈ Gm and UAV m ∈ M
at time slot t can be expressed as

λm,n(t) = 20log(
√
H2 + dm,n(t)2)

+ δm,n(t)(ηLoS − ηNLoS) + 20log[(4πf)/c] + ηNLoS ,

where f and c signify the carrier frequency and the speed of
light, respectively; ηLoS and ηLoS are the losses corresponding

to the LoS and non-LoS links, respectively.
Since a common frequency band is reused among all links,

the signal-to-interference-plus-noise ratio (SINR) at UAV m ∈
M with regard to the uplink communication of IoT device
n ∈ Gm at time slot t can be calculated as

σm,n(t) =
vn(t)(wm(t)>)ptrann 10

−λm,n
10∑N

i=1\{n} vn(t)(wm(t)>)ptrani 10
−λm,n

10 + ϕB
,

where ptrann is the transmission power of IoT device n,
and ϕ indicates the power spectral density of noise. At
time slot t, we consider that IoT device n ∈ Gm can
offload no more than one task to its associated UAV m.
Let vn(t) = {vn,1(t), vn,2(t), ..., vn,c(t), ..., vn,C(t)}, where
c ∈ {1, 2, ..., C} is the index of the type of task, and
vn,c(t) = 1 signifies that IoT device n requests to of-
fload task c, and vn,c(t) = 0, otherwise. Meanwhile,
the applications placed in UAV m can be defined as
wm(t) = {wm,1(t), wm,2(t), ..., wm,c(t), ..., wm,C(t)}, where
wm,c(t) ∈ {0, 1} signifies whether UAV m places the appli-
cation type c. Note that, any UAV m ∈ M can only process
the types of tasks fitting the types of its placed applications.
Based on these, the transmission time of IoT devices n ∈ Gm
in offloading a task to UAV m ∈M can be written as

toffm,n(t) =
vn(t)(wm(t)>)Dn

Blog2(1 + σm,n(t))
,

where Dn is the size of task offloaded by IoT device n.
Within each time slot t, we consider that UAV m ∈ M

hovers over the center of a certain grid to provide MEC
services with time duration thover, and toffm,n(t) < thover < |t|,
∀n ∈ Gm,∀m ∈M, which means that thover is large enough
for UAV m to receive any task offloaded by any IoT device
and is shorter than the duration of a time slot. Then, the size
of tasks computed by UAV m ∈M can be expressed as

Taskcompm (t) = min{
∑
n∈Gm vn(t)(wm(t)>)Dn,

(thover −min{toffm,n(t)n∈Gm})fUm},

where fUm is the computing capacity of UAV m (in the number
of CPU cycles per second), and (thover−min{toffm,n(t)n∈Gm})
indicates that UAV m starts edge computing since the first task
is totally received. Correspondingly, the energy consumption
of UAV m ∈M for computing tasks at slot t is calculated as

Ecompm (t) = ξ(fUm)2Taskcompm (t),

where ξ shows the capacitance coefficient of UAV m ∈M.
Furthermore, let κm(t) ∈ {0, 1} stand for the decision that

UAV m ∈ M chooses to whether return to the depot at the
beginning of each time slot t. If UAV m ∈M decides to not
return to the depot (denoted by κm(t) = 1), it will select a
direction among forward, backward, left and right, and then
move to the center of another adjacent grid with a constant
velocity V . The propulsion energy consumption (consisting of
the energy consumption of horizontal moving and hovering)
of the UAV m can be expressed as Eprom = P prom (V ) qV +
P prom (0)thover, where P prom is the propulsion power model of



UAVs, and its descriptions follows from [11] and are omitted
here. If UAV m ∈M decides to return to the depot (denoted
by κm(t) = 0), the energy consumption of UAV m moving
between the target region and the depot with the constant
velocity V can be written as Edepm = 2 · P prom (V )

dm,dep(t)
V ,

where dm,dep(t) is the distance between UAV m and the
depot at time slot t. At the depot, UAV m can quickly
renew its energy and also update its application placement
for better serving IoT devices. Note that, the total size of
applications placed at UAV m ∈ M should be smaller than
its storage capacity Sm, that is

∑C
c=1 µcwm,c(t) ≤ Sm, where

µc stands for the size of application type c. Additionally,
to guarantee the quality of service (QoS) of IoT devices,
each type of application should be placed in at least one
UAV hovering over the target region at each time slot t, i.e.,∑M
m=1 wm,c(t)κm(t) ≥ 1,∀c ∈ C. After replenishing energy

and updating application placement, UAV m will back to the
original region and continue to provide MEC services.

B. Problem Formulation

In this work, we aim to maximize the energy efficiency of
all UAVs, i.e., total amount of offloaded tasks computed by
all UAVs over their total energy consumption, and we have

Eeffi(t) =

M∑
m=1

κm(t)Taskcompm (t)

M∑
m=1

(κm(t)(Ecompm (t)+Eprom )+(1−κm(t))Edepm )

(1)

Then, the joint optimization of UAVs’ trajectory planning,
energy renewal and application placement is formulated as

[P1] : max
Um(t),wm(t),κm(t)

lim
T→+∞

1

T

∑T

t=1
Eeffi(t) (2)

s.t., κm(t) ∈ {0, 1},∀m ∈M, (3)
wm,c(t) ∈ {0, 1},∀m ∈M,∀c ∈ C, (4)∑C

c=1
µcwm,c(t) ≤ Sm,∀m ∈M, (5)∑M

m=1
wm,c(t)κm(t) ≥ 1,∀c ∈ C, (6)

|Um(t)− Um(t− 1)|2κm(t) = q2,∀m ∈M, (7)

(xUm(t)−xUm(t−1))(yUm(t)−yUm(t−1))κm(t)=0, (8)
|Um(t)− Um′(t)|κm(t) ≥ q,∀m 6= m′, (9)

where constraint (5) means that the total size of applications
placed at each UAV should be less than its storage capacity;
constraint (6) states that QoS of serving IoT devices should
be met; constraints (7) and (8) imply that each UAV can only
move to the center of adjacent grid if it does not return to
the depot; constraint (9) indicates that each grid can only
be covered by one UAV to avoid potential collisions. In the
following section, we will first analyze problem [P1], and then
propose a novel approach to derive the solution.

III. PROBLEM REFORMULATION AND SOLUTION

A. Problem Reformulation

Since UAVs are intelligent, to solve problem [P1], we can
allow each UAV to make its own decisions while regulating

the underlying cooperation and competition among them.
Specifically, UAVs are expected to cooperatively conduct the
trajectory planning, energy renewal and application placement
to maximize the energy efficiency of all UAVs while guar-
anteeing QoS of IoT devices. Meanwhile, allowing UAVs to
make decisions themselves may also lead to competitions in
trajectory planning, energy renewal and application placement
among them. Additionally, considering the uncertainty that the
future environment information (e.g., task requirements of IoT
devices) is not available to UAVs, to this end, we reformulate
[P1] as three coupled multi-agent stochastic games as follows.
[P1] is reformulated as three coupled multi-agent stochas-

tic games, i.e., TPSG 〈M,STPSG,ATPSG,PTPSG,RTPSG〉,
ERSG 〈M,SERSG,AERSG,PERSG,RERSG〉 and APSG
〈M,SAPSG,AAPSG,PAPSG,RAPSG〉, where M indicates
the set of agents (i.e., UAVs in this paper), S stands for the
environment states, A represents the set of joint actions of all
agents, P signifies the set of state transition probabilities, and
R is the set of reward functions. Particularly, for TPSG, each
UAV m ∈M will choose an action individually based on the
current environment states sTPSG(t) ∈ STPSG at each time
slot t, and then form a joint action aTPSG(t) ∈ ATPSG.
After executing the joint action, rewards will be obtained
according to RTPSG, and the environment states will turn
to be next ones following PTPSG. The descriptions of ERSG
and APSG are similar to TPSG, and are omitted here. Note
that, TPSG, ERSG and APSG are inherently coupled. In the
following subsection, we propose a novel approach, called
TLRL, to obtain equilibriums of these three coupled multi-
agent stochastic games.

B. TLRL Approach

The transitions of states actions of TPSG, ERSG, and APSG
satisfy the Markov property, because all joint actions, i.e.,
aTPSG(t), a(t)ERSG and a(t)APSG, at time slot t only
depend on the environment states at time slot t, i.e., sTPSG(t),
sERSG(t) and sAPSG(t), and thereby, in this paper, we
characterize each UAV’s strategic decision process in TPSG,
ERSG and APSG by three Markov decision processes (MDPs).

MDP for each UAV in TPSG: With the aim of finding
the optimal trajectories for all UAVs, the individual decision
making problem for each UAV m ∈ M in TPSG can be
modelled as an MDP (STPSG,ATPSGm ,RTPSGm ,PTPSG).

1) Environment State for Each UAV in TPSG: The environ-
ment state sTPSG(t) ∈ STPSG for UAV m ∈ M in TPSG
at time slot t consists of all UAVs’ positions Um(t), m ∈M
and application placement wm(t), m ∈ M , which can be
expressed as sTPSG(t) = (Um(t),wm(t))m∈M.

2) Action for Each UAV in TPSG: At time slot t, UAV
m ∈ M chooses an action aTPSGm (t) ∈ ATPSGm , where
ATPSGm is the set consisting of four possible actions, i.e.,
moving forward, backward, left or right.

3) Reward of Each UAV in TPSG: The immediate reward
of UAV m ∈M at time slot t is given by

RTPSGm (t) =
κm(t)Taskcompm (t)

Ecompm (t) + Eprom
, (10)



where the numerator indicates the size of tasks computed by
UAV m at time slot t, and the denominator represents the
energy consumption of UAV m at time slot t.

4) State Transition Probabilities of UAVs in
TPSG: The state transition probability from state
sTPSG to sTPSG

′
by taking the joint action

aTPSG(t)=(aTPSG1 (t), aTPSG2 (t), ..., aTPSGM (t)) can
be expressed as PTPSG

sTPSG,sTPSG′
(aTPSG(t))=Pr(sTPSG(t +

1)=sTPSG
′ |sTPSG(t) = sTPSG,aTPSG(t)).

MDP for each UAV in ERSG: With the aim of de-
signing the optimal schedule of energy renewal for all
UAVs, the individual decision making problem for each
UAV m ∈ M in ERSG can be modelled as an MDP
(SERSG,AERSGm ,RERSGm ,PERSG).

1) Environment State for Each UAV in ERSG: The envi-
ronment state sERSG(t) ∈ SERSG for UAV m ∈ M in
ERSG at time slot t consists of all UAVs’ remaining energy
Eremainm (t), m ∈ M and positions Um(t), m ∈ M, which
can be expressed as sERSG(t) = (Eremainm (t),Um(t))m∈M.

2) Action for Each UAV in ERSG: UAV m ∈ M chooses
an action aERSGm (t) ∈ AERSGm at time slot t, where AERSGm

is the set consisting of two actions, i.e., deciding to return to
the depot or not.

3) Reward of Each UAV in ERSG: The immediate reward
of UAV m ∈M at time slot t is given by

RERSGm (t) =

{
−10, if constraint (6) is violated,
κm(t), otherwise. (11)

This reward function can prompt UAVs to hover over the target
region providing MEC services without violating (6).

The definition of state transition probabilities of UAVs in
ERSG PERSG is similar to that in TPSG and is omitted here.

MDP for each UAV in APSG: With the aim of producing
the optimal policy for updating the application placement
of all UAVs, the individual decision making problem for
each UAV m ∈ M in APSG can be defined as an MDP
(SAPSG,AAPSGm ,RAPSGm ,PAPSG).

1) Environment State for Each UAV in APSG: The environ-
ment state sAPSG(t) ∈ SAPSG for UAV m ∈M at time slot
t consists of applications placed in all UAVs wm(t),m ∈M
and the amount of the task requests from IoT devices covered
by UAV m before t, i.e., θm(t) =

∑t
τ=1

∑
n∈Gm vn(τ),m ∈

M, and thus sAPSG(t) = (wm(t), θm(t))m∈M.
2) Action for Each UAV in APSG: UAV m ∈ M chooses

an action aAPSGm (t) ∈ AAPSGm at time slot t, signifying that
it selects Sm types of applications from the total C types.

3) Reward of Each UAV in APSG: The immediate reward
of UAV m ∈M in APSG at time slot t is given by

RAPSGm (t) =
e(t)

C

t∑
τ=1

∑
n∈Gm

vn(τ)wm(τ)>, (12)

where e(t) indicates the number of application types placed
in all UAVs at time slot t. This reward function would
guide UAVs to update more popular but diverse applications
according to the history of providing MEC services.

The definition of state transition probabilities PAPSG is
similar to that in TPSG and is omitted here.

Based on the above three MDP formulations, we develop a
novel triple learner (i.e., trajectory learner, energy learner and
application learner) based reinforcement learning approach
to obtain equilibriums of these three coupled multi-agent
stochastic games. Specifically, each UAV runs three Q-learning
algorithms to learn the optimal Q values of each state-action
pair, and obtain the optimal local policies for trajectory learner,
energy learner, and application learner. It is worth noting
that, since trajectory planning, energy renewal and application
placement are tightly coupled, these three learners have to run
in a back-and-forth manner.

1) Settings for Trajectory Learner: The policy πTPSGm :
STPSG → ATPSGm of the trajectory learner in UAV m ∈
M, meaning a mapping from the environment state set to
the action set, signifies a probability distribution of actions
aTPSGm ∈ ATPSGm in a given state sTPSG. Particularly,
for UAV m in state sTPSG ∈ STPSG, the trajectory pol-
icy of the trajectory learner in UAV m can be presented
as πTPSGm (sTPSG) = {πTPSGm (sTPSG, aTPSGm )|aTPSGm ∈
ATPSGm }, where πTPSGm (sTPSG, aTPSGm ) is the probability of
UAV m selecting action aTPSGm in state sTPSG.

In Q-learning, the process of building trajectory policy
πTPSGm is significantly affected by trajectory learner’s Q
function, and the Q function of the trajectory learner in UAV m
is the expected reward by executing action aTPSGm ∈ ATPSGm

in state sTPSG ∈ STPSG under the given policy πTPSGm ,
which can be expressed by

QTPSGm (sTPSG,aTPSG, πTPSGm ) =
E(
∑∞
τ=0 γ

τRTPSGm (t+ τ + 1)|sTPSG(t) = sTPSG,
a(t)TPSG = aTPSG, πTPSGm ),

(13)

where γ is a constant discounted factor with γ ∈ [0, 1], and
the results of (13) are termed as action values, i.e., Q values.

Trajectory learner in UAV m ∈ M selects an action
aTPSGm (t) ∈ ATPSGm according to its Q function at slot
t. For striking a balance between exploration and exploita-
tion, we consider an ε-greedy exploration strategy for the
trajectory learner. Specifically, the trajectory learner in UAV
m ∈ M selects a random action aTPSGm ∈ ATPSGm

in state sTPSG ∈ STPSG with probability ε and selects
the best action aTPSG∗m with probability (1 − ε), where
the best action has QTPSGm (sTPSG,aTPSG∗, πTPSGm ) ≥
QTPSGm (sTPSG,aTPSG, πTPSGm ), ∀aTPSG ∈ ATPSG with
aTPSG∗m being the m-th element of aTPSG∗. Besides, if the
later described energy learner in UAV m selects to return to
the depot, the trajectory learner will not choose any action in
ATPSGm . Then, the probability of selecting action aTPSGm ∈
ATPSGm in state sTPSG can be expressed by

πTPSGm (sTPSG, aTPSGm )

=

 0, if UAV m decides to return to the depot,
1− ε, if QTPSGm (sTPSG, ·, ·) of aTPSGm is the highest,
ε, otherwise.

In the Q value update step of Q-learning, the trajectory



learner in each UAV m ∈M follows the update rule:

QTPSGm (sTPSG,aTPSG, t+ 1) =
QTPSGm (sTPSG,aTPSG, t) + βTPSG(RTPSGm (t)+

γ max
aTPSG′∈ATPSG

QTPSGm (sTPSG
′
,aTPSG

′
, t)

−QTPSGm (sTPSG,aTPSG, t)),

(14)

where βTPSG denotes the learning rate in TPSG.
2) Settings for Energy Learner: The policy of energy learner

in UAV m ∈M is expressed as πERSGm : SERSG → AERSGm .
Here, the Q function of the energy learner in UAV m ∈M

can be expressed by

QERSGm (sERSG,aERSG, πERSGm ) =
E(
∑∞
τ=0 γ

τRERSGm (t+ τ + 1)|sERSG(t) =sERSG,
a(t)ERSG =aERSG, πERSGm ).

(15)

The energy learner in UAV m ∈ M selects an action
aERSGm ∈ AERSGm (i.e., whether returning to the depot) also
according the ε-greedy exploration strategy. Then, we have

πERSGm (sERSG, aERSGm )

=

{
1− ε, if QERSGm (sERSG, ·, ·) of aERSGm is the highest,
ε, otherwise.

The energy learner in UAV m ∈M follows the update rule:

QERSGm (sERSG,aERSG, t+ 1) =
QERSGm (sERSG,aERSG, t) + βERSG(RERSGm (t)+

γ max
aERSG′∈AERSG

QERSGm (sERSG
′
,aERSG

′
, t)

−QERSGm (sERSG,aERSG, t)),

(16)

where βERSG denotes the learning rate in ERSG.
3) Settings for Application Learner: The policy of applica-

tion learner in UAV m ∈M is πAPSGm : SAPSG → AAPSGm .
Here, the Q function of the application learner in UAV m ∈

M can be expressed by

QAPSGm (sAPSG,aAPSG, πAPSGm ) =
E(
∑∞
τ=0 γ

τRAPSGm (t+ τ + 1)|sAPSG(t) =sAPSG,
a(t)APSG = aAPSG, πAPSGm ).

(17)

The application learner in UAV m ∈ M selects an action
aAPSGm ∈ AAPSGm also according the ε-greedy exploration
strategy. Then, we have

πAPSGm (sAPSG, aAPSGm )

=

{
1− ε, if QAPSGm (sAPSG, ·, ·) of aAPSGm is the highest,
ε, otherwise.

The update rule of application learner in UAV m ∈M is

QAPSGm (sAPSG,aAPSG, t+ 1) =
QAPSGm (sAPSG,aAPSG, t) + βAPSG(RAPSGm (t)+

γ max
aAPSG′∈AAPSG

QAPSGm (sAPSG
′
,aAPSG

′
, t)

−QAPSGm (sAPSG,aAPSG, t)),

(18)

where βAPSG denotes the learning rate in APSG.
In summary, the proposed TLRL approach is detailedly

illustrated in Algorithm 1.

Algorithm 1: TLRL Approach
1 for m = 1 to M do
2 Initialize Q values QTPSG

m = QERSG
m = QAPSG

m = 0;

3 Set the maximal iteration counter LOOP and loop = 0;
4 for loop < LOOP do
5 t = 0;
6 for m = 1 to M do
7 Send QTPSG

m , QERSG
m and QAPSG

m to other UAVs;

8 while t ≤ T do
9 Observe state sTPSG, sERSG and sAPSG;

10 for m = 1 to M do
11 UAV m selects aERSG

m according to πERSG
m ;

12 if UAV m returns to the depot then
13 UAV m selects aAPSG

m according to πAPSG
m ;

14 else
15 UAV m selects aTPSG

m according to πTPSG
m ;

16 Obtain rewards RTPSG
m , RERSG

m and RAPSG
m ;

17 Update QTPSG
m , QERSG

m and QAPSG
m according to (14),

(16) and (18), respectively;
18 Send QTPSG

m , QERSG
m and QAPSG

m to other UAVs;
19 Set t = t+ 1;

20 Set loop = loop+ 1.

TABLE I: Simulation Parameters

Param. Value Param. Value Param. Value

M 3 B 10MHz C 10
N 300 Dn [2, 5]MB V 20m/s
thover 5 s ξ 10−18 f 3GHz
q 100 m ptrann [0.2, 0.5]W H 120m
Sm 6GB µc [1, 3]GB ϕ −174 dBm/Hz
a, b 9.6117,

0.1581
fUm 2Mbps Target

region
1000 m×1000 m

IV. SIMULATION RESULTS

In this section, simulations are conducted to evaluate the
performance of the proposed TLRL approach for [P1]. Table I
lists the values of all simulation parameters, and the propulsion
power model follows [11]. Similar settings have also been
employed in [9], [12].

For comparison purpose, we introduce an energy efficient
oriented trajectory planning (EOTP) algorithm and an exist-
ing algorithm called decentralized multiple UAVs cooperative
reinforcement learning (DMUCRL) [9] algorithm as bench-
marks: EOTP determines the trajectories of all UAVs with
the aim of maximizing the energy efficiency but asks UAVs
to return to the depot for energy renewal only when their
batteries are exhausted, and EOTP does not enable the update
of application placement; DMUCRL is originally designed to
maximize the energy efficiency of UAVs in downlink content
sharing by controlling all UAVs to work collaboratively based
on a double Q-learning (each UAV contains a trajectory learner
and an energy learner).

Fig. 2 investigates the energy efficiency with different IoT
devices’ transmission power under DMUCRL, EOTP and the
proposed TLRL. It can be observed that the energy efficiency
first increases and then becomes stable with the increase of IoT
devices’ transmission power. This is because, with a larger
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Fig. 2: Energy efficiency w.r.t. trans-
mission power of IoT devices.

1 2 3 4 5 6 7 8 9 10

Storage Capacity of Each UAV (GB)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 o

f 
A

ll 
U

A
V

s
 (

b
it
/J

)

Grid Size q=50m

Grid Size q=100m

Grid Size q=200m

Fig. 3: Energy efficiency w.r.t. storage
capacity of each UAV.
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Fig. 4: Energy efficiency w.r.t. UAV
hovering time.

transmission power, IoT devices would offload more tasks
to their associated UAVs, and thereby increasing the amount
of tasks processed by UAVs. However, since the computing
capacity of each UAV is still limited, such increasing trend
slows down as the limit is approaching. More importantly,
this figure shows that the proposed TLRL outperforms both
DMUCRL and EOTP. The reason is that i) each UAV under
EOTP returns to the depot directly once its energy is exhausted
regardless of other UAVs (lacking the cooperation in providing
all kinds of MEC services to IoT devices); ii) each UAV’s
applications are fixed placed under DMUCRL, making it
capable of serving very limited IoT devices; and iii) our
proposed TLRL well addresses the shortcomings of DMUCRL
and EOTP by jointly optimizing all UAVs’ trajectory planning,
energy renewal and application placement.

Fig. 3 shows all UAV’s energy efficiency with differ-
ent UAV storage capacities under different grid size set-
tings.Specifically, UAVs can adjust their downlink transmis-
sion ranges so as to adjust the size q of grids. It can be
seen from Fig. 3 that the larger the grid size is, the higher
energy efficiency of all UAVs is obtained. This is because
with a larger grid size, more IoT devices are included in a grid,
and thereby each UAV can potentially process more offloaded
tasks. Besides, it is also shown that the energy efficiency of
all UAVs increases monotonically with the storage capacity
of each UAV. The reason is that with the increase of storage
capacity, more types of applications can be placed in each
UAV, so that more tasks may be processed.

Fig. 4 illustrates the energy efficiency of all UAVs with
different UAV hovering time under DMUCRL, EOTP and the
proposed TLRL. It can be observed that, the energy efficiency
of all UAVs first increases with the UAV hovering time, and
then decreases. This is because with the growth of UAV
hovering time, more offloaded tasks from IoT devices can be
computed by UAVs during hovering. However, when all tasks
have been completely processed by UAVs, they will become
idle and consume hovering energy over the target region until
hovering time expires. Additionally, it is also shown that the
proposed TLRL outperforms both DMUCRL and EOTP, and
the explanations for this are similar to those for Fig. 2.

V. CONCLUSION

In this paper, an energy efficient scheduling problem for
multi-UAV assisted MEC has been studied. With the aim
of maximizing the long-term energy-efficiency of all UAVs,
a joint optimization of UAVs’ trajectory planning, energy
renewal and application placement is formulated. By taking
the inherent cooperation and competition among UAVs, we
reformulate such optimization problem as three coupled multi-
agent stochastic games, and then propose a novel TLRL
approach for reaching equilibriums. Simulation results show
that, compared to counterparts, the proposed TLRL approach
can significantly increase the energy efficiency of all UAVs.
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