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Abstract—The Internet of things (IoT) can significantly en-
hance the quality of human life, specifically in healthcare, attract-
ing extensive attentions to IoT-healthcare services. Meanwhile,
the human digital twin (HDT) is proposed as an innovative
paradigm that can comprehensively characterize the replication
of the individual human body in the digital world and reflect
its physical status in real time. Naturally, HDT is envisioned to
empower IoT-healthcare beyond the application of healthcare
monitoring by acting as a versatile and vivid human digital
testbed, simulating the outcomes and guiding the practical treat-
ments. However, successfully establishing HDT requires high-
fidelity virtual modeling and strong information interactions but
possibly with scarce, biased and noisy data. Fortunately, a recent
popular technology called generative artificial intelligence (GAI)
may be a promising solution because it can leverage advanced
AI algorithms to automatically create, manipulate, and modify
valuable while diverse data. This survey particularly focuses
on the implementation of GAI-driven HDT in IoT-healthcare.
We start by introducing the background of IoT-healthcare and
the potential of GAI-driven HDT. Then, we delve into the
fundamental techniques and present the overall framework of
GAI-driven HDT. After that, we explore the realization of GAI-
driven HDT in detail, including GAI-enabled data acquisition,
communication, data management, digital modeling, and data
analysis. Besides, we discuss typical IoT-healthcare applications
that can be revolutionized by GAI-driven HDT, namely personal-
ized health monitoring and diagnosis, personalized prescription,
and personalized rehabilitation. Finally, we conclude this survey
by highlighting some future research directions.

Index Terms—IoT-healthcare, generative artificial intelligence,
human digital twin, generative adversarial network, variational
autoencoder, transformer, diffusion model

I. INTRODUCTION

A. Background

THE advancements of Internet of the Things (IoT) in re-
cent years is leading to a paradigm shift in the healthcare

industry, which are termed IoT-healthcare [1], [2]. An Ireland
healthcare organization estimates that roughly 17.5 million
lives are lost annually due to inefficiencies in health data
[3]. The main inefficiency is the delay access to and analyze
health data, resulting in untimely interventions. Fortunately,
the progression of IoT-healthcare presents a promising avenue
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to tackle these challenges. By enabling the real-time collection
and transmission of pertinent health data to servers for in-depth
healthcare analysis via personal IoT devices, it can prompt
timely healthcare alerts and proactive interventions for saving
lives. It has been widely applied in healthcare monitoring,
including blood glucose monitoring, cardiac monitoring, res-
piration monitoring and blood pressure monitoring [4], [5].

Human digital twin (HDT), a promising technology and
game changer for IoT-healthcare, is taking this field to another
level. HDT can create a digital replica of a human body,
comprehensively and precisely characterizing each individual
in the digital space while reflecting its physical status in real
time [6]–[10]. Besides, with visualization and interaction char-
acteristics, HDT is envisioned as a versatile and vivid human
digital testbed for revolutionizing the IoT-healthcare, beyond
healthcare monitoring applications mentioned above. For in-
stance, a patient’s HDT can be implemented in silico treatment
simulations and experiments, facilitating the development of
finely-tailored, personalized treatment plans [11]. Additionally,
a doctor’s HDT with expert-level medical knowledge can be
a personal 24/7 doctor to answer the patients’ queries [12].

The successful establishment and implementation of HDT
largely depend on the high-fidelity human modeling, supported
by comprehensive individual-level data encompassing appear-
ance, movement, and physiological data, acquired from multi-
source, such as IoT devices. In addition, as an intelligent
human digital testbed, HDT needs to generate various human-
like feedback during immersive real-virtual interactions. These
include, for example, providing intuitive feedback on drug-
disease responses, and simulating haptic feedback to replicate
the tactile sensations experienced by humans in real-world
scenarios. All such requirements are difficult to meet due to
several crucial reasons, e.g., data scarcity, bias, noise and
intricate digital modeling. Fortunately, generative artificial
intelligence (GAI) has been recognized as a promising tech-
nology that can effectively fulfill or assist the implementation
of HDT for IoT-healthcare [13].

GAI can leverage advanced AI algorithms to automati-
cally create, manipulate, and modify valuable while diverse
data [14], [15]. Specifically, GAI models, such as generative
adversarial network (GAN), variational autoencoder (VAE),
transformer, and diffusion model, with their powerful cre-
ativities and data analysis abilities can generate ultra-realistic
individual-level data and make informed decisions for HDT
in IoT-healthcare, which will be elaborated in Section III.
Thus, our survey focuses on how GAI enables HDT in IoT-
healthcare, namely GAI-driven HDT in IoT-healthcare.
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TABLE I
COMPARISON OF THE RELATED WORK WITH OUR SURVEY.

Reference IoT-Healthcare GAI HDT Remark

Habibzadeh et al., 
[4] 2020 √ × ×

This survey investigated enabling technologies 
in IoT-healthcare, focusing on communication, 
data analytics and acquisition. It also highlights 

various applications such as blood glucose 
monitoring, cardiac monitoring, etc.

Yang et al.,
[5] 2022 √ × ×

This survey analyzed IoT-healthcare 
applications, including activity recognition, 

fitness assistance and sleep monitoring, and 
surveyed implementation approaches using 

body-worn hardware or wireless signal 
transceivers.

Chen et al.,
[8] 2023 √ × √

This survey focused on the networking 
architecture and key technologies of HDT in 

personalized healthcare applications.

Sun et al.,
[22] 2023 √ × √

This survey highlighted the HDT can 
revolutionize IoT-healthcare by providing 

customized diagnosis and treatment.

AlAmir et al.,
[23] 2022 √ √ ×

This survey discussed extension models of 
GANs, surveyed their applications in medical 

images, such as cross-modality synthesis, 
segmentation, etc.

Shokrollahi et al., 
[24] 2023 √ √ ×

This paper highlight the critical role of GAI, such 
as transformers and diffusion models, in 

healthcare, which significantly enhance clinical 
diagnosis, data reconstruction, and drug 

synthesis.

Our Survey √ √ √

This survey comprehensively explores the 
fundamentals of HDT and GAI, and discusses 

the implementation of GAI-driven HDT. Besides, 
it delves into the IoT-healthcare applications of 
GAI-driven HDT, including personalized health 

monitoring and diagnosis, personalized 
prescription, and personalized rehabilitation. It 

finally provides the future directions.  

B. Related Work and Contributions

Given the increasing interest of GAI-driven HDT in IoT-
healthcare, several surveys and tutorials have been recently
published [16]–[21]. Table I presents a comparison of these
related works compared with ours.

Specifically, Habibzadeh et al. in [4] surveyed the existing
and emerging technologies that can enable IoT-healthcare.
It presented the enabling technologies by investigating three
of IoT-healthcare primary components: 1) sensing and data
acquisition; 2) communication; and 3) data analytics and
inference. Based on these, they also highlight some IoT-
healthcare applications, including blood glucose monitoring,
cardiac monitoring, respiration monitoring, blood pressure
monitoring, among others. Yang et al. in [5] investigated the
IoT-healthcare applications with high relevance to daily health
routines, including activity recognition, fitness assistance, vital
signs monitoring, daily dietary tracking, and sleep monitoring.
Additionally, they surveyed the ways of implementing these
applications based on leveraging of sensors, such as device-
based paradigms using hardware on the body, and device-free
paradigms using wireless signal transceivers. However, these
surveys mainly focused on healthcare monitoring enabled by
IoT, ignoring the power of integration of HDT, which can

significantly enrich the application of IoT-healthcare.
With the prevalence of HDT, there are several surveys are

liberating the power of HDT in IoT-healthcare. Chen et al.
in [8] comprehensively explored the networking architecture
and key supporting technologies for realizing HDT in per-
sonalized healthcare. Specifically, the networking architecture
consisted of data acquisition, communication, computation,
data management, data analysis and decision making layers.
They surveyed the enabling technologies for each layer. Addi-
tionally, they delved into the application of HDT in personal-
ized healthcare, including personalized diagnosis, prescription,
surgery, and rehabilitation. Sun et al. in [22] highlighted
that the HDT can revolutionize IoT-healthcare by providing
customized diagnosis and treatment. They revealed that by
using a patient’s HDT, the medical system can predict the
patient’s immune response to infection or injury, which can
help doctors diagnose diseases precisely. Additionally, they
investigated that the patient’s HDT can be used as a vivid
digital testbed before the prescription or surgery, thereby
supporting personalized treatment in a non-invasive manner.
Furthermore, they surveyed more specific applications of HDT
in IoT-healthcare, including cardiovascular disease, surgery,
pharmacy, orthopaedics and COVID-19. However, none of
them discuss the role of GAI for HDT in IoT-healthcare.
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GAI, with its superior data generation and analysis capabili-
ties, has attracted a myriad of researches recently, and many of
them focused on its application in healthcare. AlAmir et al. in
[23] discussed the recent advancements in GANs, particularly
in the healthcare field. Specifically, they investigated the ex-
tension models of GANs by classifying and introducing them
individually. Then, they surveyed the applications of these
GAN models in medical images, including cross-modality
synthesis, segmentation, augmentation, detection, classifica-
tion, registration and reconstruction. Shokrollahi et al. in [24]
delved into the critical role of GAI, such as transformers and
diffusion models, in healthcare applications, including medical
imaging, protein structure prediction, clinical documentation,
diagnostic assistance, radiology interpretation, clinical deci-
sion support, drug design and molecular representation. Such
applications have significantly enhanced clinical diagnosis,
data reconstruction, and drug synthesis.

The surveys above are centered around IoT-healthcare, HDT
and GAI. However, none of them explore the potential of GAI
with remarkable data generation and analysis capabilities for
enabling HDT in IoT-healthcare applications. This motivates
us to compose this survey investigating the GAI-driven HDT
in IoT applications. The contributions of this survey can be
summarized as follows:

• We thoroughly review the HDT and GAI technique,
including differences between HDT and the conventional
DT and the framework of HDT, as well as the popular
GAI models.

• We explore the implementation of GAI-driven HDT. We
comprehensively explain how GAI enables each com-
ponent of HDT’s framework, including data acquisition,
digital modeling, communication,data management and
data analysis.

• We survey GAI-driven HDT in IoT-healthcare appli-
cations, including personalized health monitoring and
diagnosis, prescription, and rehabilitation.

• We outline several open issues and future directions in
GAI-driven HDT in IoT-healthcare, helping to drive the
development of this field.

The rest of this paper is organized as follows: Section II
presents the fundamentals of HDT and GAI, and gives an
overview of the framework of GAI-driven HDT. In Section III,
the implementation of GAI-driven HDT is analyzed in detail.
Section IV surveyed the IoT-healthcare application of GAI-
driven HDT, including personalized health monitoring and
diagnosis, personalized prescription, and personalized rehabil-
itation. Section V explores several future research directions
of GAI-driven HDT in IoT-healthcare. Section VI concludes
this survey paper.

II. FUNDAMENTALS OF HDT AND GAI

A. Human Digital Twin

HDT as the versatile and vivid digital portrayal of indi-
vidual, is breathing life into the digital world. According to
Emergen Research, the global market for HDT will grow from
29.51$ billion in 2022 to about 530$ billion in 2032 [25].

With the continuous advancement of HDT, the IoT-healthcare
is being revolutionized by HDT [8], [9], [13], [26].

HDT, focuses on digital replicas of human beings while
the conventional DT limits the attention to non-living physical
entities, e.g., machines [27] and networks [28]. Then, several
distinguishing characteristics between HDT and the conven-
tional DT are detailed below and summarized in Table II.

• Physiology and psychology: The most significant differ-
ence between HDT and conventional DT is physiology
and psychology [29]–[31]. This includes attributes such
as: i) physiological characteristics, e.g., brain electrophys-
iologic signals, blood oxygen level and heart rate; ii)
perceptual abilities, e.g., visual sensitivity, pressure sen-
sitivity and temperature sensitivity; iii) emotional state,
e.g., happiness, depression and anxiety; iv) personality
characteristics, e.g., personality type, propensity to trust,
and propensity towards suspicion.

• Behavioral rule: Human beings’ external behaviors highly
depend on the individual subjective consciousness. Par-
ticularly, internal behaviors, such as the progression of
diseases and emotional states, are generally influenced
by multi-source and complex factors, including external
environments. In contrast, machines generally follow pre-
dominantly model-based and predetermined behavioral
rules [32], [33]. Therefore, humans are highly complex
systems with greater uncertainty levels than machines.
The abstract processes of human beings in HDT are
significantly more challenging than those of machines in
the conventional DT.

• Metrics for evaluation: The human-centered paradigm
of HDT requires improving human beings’ well-being
by considering their roles, needs, talents and rights.
Meanwhile, the conventional DT commonly takes the
performance-centered interest first for improving produc-
tion and economic benefits. Specifically, the conventional
DT typically prioritize metrics such as efficiency, pro-
ductivity, effectiveness, and profitability. However, HDT
extends the scope of metrics to contain usability, user
experience, etc [7].

• Data complexity: Human beings are more heterogeneous
and unstructured than non-living machines. Consequently,
unlike the conventional DT, building a high-fidelity dig-
ital representation model of any human entity in HDT
requires diverse and complex data from multiple sources.
In addition to physiological data, unstructured data from
environmental factors and social media play a crucial role
in abstracting human virtual twins. This is due to the
significant correlation between human beings and such
external data sources [8].

• Mobility pattern: Unlike the position-fixed machines in
the conventional DT, the mobility patterns in HDT may
be highly predictable. The mobility patterns of human
beings can be categorized into human positional and pos-
tural mobility. Positional mobility, like a person moving
from indoors to outdoors, may cause radio frequency
(RF) propagation characteristics to change and even the
service migrations. Additionally, the postural mobility of
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TABLE II
DIFFERENCES BETWEEN HDT AND THE CONVENTIONAL DT.

Key Features Conventional DT HDT

Physiology and 
Psychology Lack of physiology and psychology

Human beings are living entities, and have
i) physiological characteristics; ii) perceptual abilities;
iii) emotional state; and iv) personality characteristics.

Behavioral Rule
The behavioral rules of machines follow 

predominantly model-based and predetermined 
behavioral rules

Human external behaviors depend on individual subjective 
consciousness and internal behaviors, affected by multi-source 

and complex factors.

Metrics for 
Evaluation

Prioritizes performance-centered interests to 
achieve mass production and enhance 

economic benefits

It expands to human-centered metrics, aiming to enhance human 
well-being by acknowledging their roles, needs, talents, and 

rights.

Data Complexity Mostly structured and homogeneous
Mostly data are heterogeneous and unstructured. Correlation 

exists between individuals and external data, such as 
environmental and social media data.

Mobility Pattern Mostly fixed with no or limited mobility The mobility patterns are highly complex, and are categorized as 
positional and postural mobility.

a human, like lying, sitting, walking, may cause signal
strength to fluctuate due to the influence of human bodies
on the path loss, known as body shadowing [8], [9], [13].

As the distinct features of HDT outlined above, the suc-
cessful implementation of HDT relies on five essential com-
ponents: data acquisition, communication, data management,
digital modeling, and data analysis [7]–[9], [34]. These com-
ponents form the framework of HDT. Note that, in HDT, the
physical entity, i.e., the individual, in the physical world is
called a physical twin (PT), while the corresponding virtual
one in the digital world is called a virtual twin (VT). Section
III delves into how GAI facilitates the actualization of HDT
by bolstering each component within the framework of HDT.
Before this, we introduce the GAI technique, unveiling its
potential for enabling HDT.

B. GAI Techniques

In this subsection, we delve into the recent primary trends
of GAI models, including generative adversarial network,
variational autoencoder, transformer and diffusion model [14],
[35]. These models find frequent applications in HDT for IoT-
healthcare.

Generative adversarial network: As depicted in Fig. 1, the
GAN comprises two neural networks engaged in a compet-
itive process to create new samples resembling a specific
distribution [36]. The first network, the generator, aims to
produce synthetic samples by comprehending the underlying
distribution of the training data. Meanwhile, the discriminator,
the second network, distinguishes between real and synthetic
data generated by the generator. Its task is to accurately
differentiate real samples and provide feedback to enhance
the quality of the generated samples. Throughout the GAN
training process, these two networks iteratively refine their
performance adversarially, engaging in a competitive interplay
until they achieve a stable equilibrium. This continuous re-
finement allows the generator to create more realistic samples
while enabling the discriminator to better distinguish between
real and synthetic data.

Real? Fake?

Discriminator
( ', '')D x x

Generator
( )G x

Encoder
( | )q z x

[ ]1 2, , , T
kZ z z z= 

Decoder
( | )p x z

Transformer

Bi-directional 
Encoder

I feel uncomfortable

Autoregressive
Decoder

You may have caught a cold

You may have 
caught a cold

Diffusion
1( | )t ta x x -

Denoising
1( | )t tA x x-

Diffusion Model

Generative Adversarial Network Variational Autoencoder

Fig. 1. The workflow of recent primary trends of GAI models, including
generative adversarial network, variational autoencoder, transformer and dif-
fusion model.

GAN has been successfully applied in HDT for IoT-
healthcare. For instance, a heart DT model was integrated into
optimizing a GAN to generate electrocardiogram (ECG) data
[37], which can be used to solve the ECG data scarcity issue
when digital modeling of cardiac activities. Additionally, a
chained GAN-based approach, which connected multiple GAN
models, was proposed to simulate the pathology of tissues in
the human body. This approach can be used to model tissue
digital twin in HDT, as well as help diagnose diseases and
predict their progress [38].

Variational autoencoder: The core idea of VAE is to
transform input data to a low-dimensional latent space rep-
resentation [39]. Illustrated in Fig. 1, VAE comprises two
neural networks. The first network, known as the encoder,
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maps input data to a latent space, often assumed to follow
a Gaussian distribution characterized by learned mean and
variance parameters. In contrast, the other network, the de-
coder, undertakes the task of reconstructing the original input
data from a sample drawn from the latent space distribution.
The decoder aims to generate a reconstructed sample closely
resembling the input data. Throughout the training process, the
encoder and decoder parameters are optimized to minimize the
reconstruction error. Additionally, a regularization term, the
Kullback-Leibler divergence, is introduced to ensure that the
learned latent space distribution closely aligns with a standard
Gaussian distribution. This regularization term contributes to
the overall objective of refining the latent space representation
in the VAE framework.

VAE has been successfully applied in HDT for IoT-
healthcare. For instance, a VAE-based approach was intro-
duced to reconstruct complete body movements using signals
from the PT’s head-mounted device (HMD) [40]. This method
enabled the digital reconstruction of full-body motion based
on signals from the head and hands. It proved beneficial
for accurately modeling human motions in scenarios where
motion data obtained from the PT may inadequately represent
complete body movements, thereby aiding motion monitoring
endeavors. Moreover, a VAE-based method was proposed to
predict potential subsequent steps in the clinical measurement
trajectory of a patient encountering an ischemic stroke [41].
This approach holds promise in simulating disease progression
within HDT, thereby assisting in customizing treatment plans
tailored to individual patients.

Transformer: Transformer excels at capturing contextual
information and long-distance dependencies in text [42]. The
architecture used in this model is an encoder-decoder structure,
as illustrated in Fig. 1. The encoder employs a bidirectional
information propagation process to comprehend the input text.
The decoder, found in most transformer architectures, gener-
ates words sequentially. This type of decoder is commonly
referred to as an autoregressive decoder. With this architecture,
embedding with self-attention mechanisms, it can effectively
process the relevant information in the input sequence, mak-
ing the generated text more accurate, coherent, and able to
consider more contextual information.

Transformer has been successfully applied in HDT for IoT-
healthcare. For example, the state-of-the-art (SOTA) language
generation model, generative pre-trained transformer (GPT),
has been incorporated into electronic health records (EHR)
workflows to autonomously respond to patients’ healthcare
inquiries [43]. This model can be visualized as an HDT
representing a doctor, equipped with extensive medical knowl-
edge, capable of addressing patient queries. Additionally, a
pre-trained transformer-based approach has been proposed to
concurrently learn gene and cell embeddings, enabling the
capture of intricate gene-to-gene interactions at the single-cell
level [44]. This approach holds promise in digitally modeling
diverse facets of cellular processes within HDT, offering
insights into personalized responses to treatments.

Diffusion model: Unlike GANs and VAEs, the diffusion
model employs a series of sequential transformations on
the input distribution [14], [45]. Specifically, as depicted in

Fig. 1, this model constructs a Markov chain comprising
diffusion steps where noise is incrementally introduced to the
input data. Subsequently, a reverse process is implemented,
gradually removing noise from the distribution to generate the
desired data samples. This inverse method transforms noise
distribution back to the original data distribution through a
gradual denoising process.

Diffusion model has been successfully applied in HDT
for IoT-healthcare [14], [46], [47]. For instance, a diffusion
mode-based approach has been proposed to generate individual
electroencephalogram (EEG) data [46]. It can help solve the
EEG data scarcity issue in HDT, and enable HDT to digitally
model brain activity patterns, supporting the neurological
health monitoring. Additionally, by collaborating with an
assistive modality embedding as prior information to diffusion
model formulation, a diffusion model-based approach has been
proposed for positron emission tomography (PET) denoising
[47]. It can be used to denoise the acquired data with noise,
providing cleaned data to HDT for better personalized health-
care monitoring and diagnostic accuracy.

In addition to the aforementioned models, other GAI mod-
els, such as normalizing flows and score-based generative
models, have also been effectively implemented in HDT for
IoT-healthcare [48], [49].

C. Framework of GAI-driven HDT

In this subsection, we give an overview of the framework
of GAI-driven HDT, as shown in Fig. 2.

Data acquisition component is significantly crucial for HDT,
which is the fuel of HDT. The required substantial health data,
such as EEG, ECG, and magnetic resonance imaging (MRI)
data, for HDT commonly collected from the IoT-enabled per-
vasive sensing and medical institutions [50]. However, these
traditional data acquisitions methods are usually inefficient
due to various factors. To this end, GAI can generate ultra-
realistic health data based on the collected data for enriching
the datasets.

The communication component plays a bridge role in HDT,
which is responsible for bi-directional data transmissions be-
tween the physical and digital worlds, such as the transmission
of the collected data and the feedback in the informal world.
However, these data are usually large-scale, multi-modal, and
time-sensitive, which are hard to fully met by traditional
communication systems. To this end, GAI-enabled commu-
nication, such as GAI-enabled semantic communication [51]–
[53] and cross-modal communication [54], can be applied to
support communication in HDT by generating the transmitted
data at the received sides, enhancing the data transmission
performances.

Data management component is the core of HDT, where
each component will interact with it for data access. Data from
both physical and digital worlds, including collected, gener-
ated, and simulated ones, are large-scale, leakage-sensitive,
and complex. To well manage these data, effective pre-
processing, as well as security and privacy schemes are
needed. To this end, GAI can be used in data imputation,
data denoise, etc., for data pre-processing. Besides, GAI can
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Fig. 2. The framework of GAI-driven HDT. It includes the GAI-enabled data acquisition, data management, data modeling and data analysis. With
the implementation of them, the GAI-driven HDT can be applied in IoT-healthcare, including personalized health monitoring and diagnosis, personalized
prescription, and personalized rehabilitation.

generate deidentified data while preserving all the patterns
from the original data for protecting private data.

Digital modeling component is responsible for the human
digitalization procedure in HDT. The digitalization procedure
models the high-fidelity human body based on the collected
data. However, traditional digital modeling methods highly
rely on accurate simulation parameters, which is hard to
achieve. To this end, GAI, with its robust generation capa-
bilities, can be adapted to model humans digitally, including
cells, tissues, organs, etc.

Data analysis component is essential in HDT, which is
responsible for analyzing data in HDT for driving the IoT-
healthcare applications. GAI with its strong analysis capa-
bilities can be used in data classification for classifying
diseases, data segmentation for obtaining key disease infor-
mation, anomaly detection for identifying abnormal status, and
prediction for predicting health status.

Based on the built GAI-driven HDT described above, it
will significantly enhance the IoT-healthcare. It can be used
in personalized health monitoring and diagnosis, prescription,
and rehabilitation, acting as the intelligent and vivid human
digital testbed.

In the following sections, we will delve into implementing
GAI-driven HDT in IoT-healthcare.

III. GAI-DRIVEN HDT IMPLEMENTATION

A. GAI-enabled Data Acquisition

Data forms the cornerstone of HDT development and
service provision [8]. Commonly employed data acquisition
methods for HDT primarily stem from diverse sources, in-
cluding medical institutions [55], as well as both non-invasive
and invasive sensors equipped in PTs [34]. Nevertheless,

these methods present challenges due to their time-consuming,
costly, intrusive nature, and limited scalability. This restricts
acquiring extensive individual-level data essential for robust
HDT development and comprehensive service delivery. GAI
can significantly assist the data acquisition in HDT, by offering
diverse and highly realistic synthetic data. In the following, we
introduce several common synthetic HDT data generated by
GAI, including synthetic physiological, medical imaging and
motion data, as summarized in Table III.

The physiological data, such as ECG, EEG, and photo-
plethysmogram (PPG), hold significant importance for HDT.
By generating synthetic physiological data, GAI mitigates
the limitations of traditional physiological data acquisition
methods, reducing costs and time associated with collecting
extensive real-world physiological data. For instance, Golany
et al. in [37] proposed ECG simulator GAN (SimGAN) to
create synthesized ECG data. Specifically, the authors used a
system of ordinary differential equations (ODE) representing
heart dynamics, and incorporated this ODE system into the
GAN training to generate biologically plausible ECG data.
Similarly, SynSigGAN proposed by Hazra et al. in [56]
can generate synthesized PPG data, as shown in Fig. 3. In
SynSigGAN, the bidirectional grid long short-term memory
(LSTM) and the convolutional neural network (CNN) had been
used for generator network and discriminator network, respec-
tively, and it was trained on BIDMC PPG and respiration
datasets [57]. In addition, diffusion model-based approaches
also applied in physiological data generation. Tosato et al.
in [46] proposed a diffusion probabilistic model (DDPM)-
based approach for EEG data synthesis. The DDPM-based
approach was trained on electrode-frequency distribution maps
developed from a large emotion-labeled EEG datasets. Alcaraz
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TABLE III
SUMMARY OF GAI-BASED APPROACH FOR DATA ACQUISITION IN HDT.

Ref. Focus Limitation of Traditional Methods GAI-based Solution

[37]

Physiological 
data acquisition Time-consuming and costly 

Proposed a GAN-based approach, ECG simulator GAN, to generate 
synthesized ECG data

[56] Proposed a GAN-based approach, SynSigGAN, to generate 
synthesized PPG data

[46] Proposed a diffusion model-based approach to generate 
synthesized EEG data.

[58] Proposed a diffusion model-based approach, structured state space 
diffusion-ECG, to generate ECG data

[61]

Medical imaging 
data acquisition

Costly, as well as patient discomfort 
and safety concerns

Proposed a diffusion model-based approach to generate 
histopathology image data

[63] Proposed a diffusion model-based approach, sequence-aware 
diffusion model, to generate longitudinal cardiac and brain MRI

[49] Proposed a normalizing flows-based approach to generate chest x-
ray and skin cancer images

[40]
Motion data 
acquisition

Limited number of motion sensors 
equipped in the human, and the poor 
transmission comprises the collected 

motion data 

Proposed a VAE-based approach to generate full-body motion 
using collected impoverished motion data

[67] Proposed a diffusion model-based approach to generate the full-
body poses conditioned on the sparse tracking motion data
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Fig. 3. Overview of the GAN-based biomedical signal synthesis, SynsigGAN, proposed in [56]. The collected signals proceed through the preprocessing
stage, eliminating noise and refining the signals using discrete wavelet transform, thresholding, and inverse discrete wavelet transform. After preprocessing,
the signals are forwarded to the segmentation stage that uses the Z-score to solve the amplitude scaling problem and eliminate offset. Next is the GAN,
which takes in the segmented signals and generates synthetic biomedical signals using bidirectional grid long short-term memory for generator network and
convolutional neural network for the discriminator. Finally, SynsigGAN outputs the synthesized biomedical signals.

et al. in [58] designed a diffusion model-based approach,
called structured state space diffusion-ECG (SSSD-ECG), for
generating synthetic 12-lead ECG data. SSSD-ECG was built
on the SSSDS4 model architecture [59] and trained on PTB-
XL dataset [60], which was a publicly available collection of
clinical 12-lead ECG data comprising 21,837 records from
18,885 patients. These highly realistic synthetic physiological
data can significantly amplify the physiological datasets that
required by HDT, to enhance the performance.

The medical imaging data hold significant importance for
HDT. Medical imaging provides detailed insights into a PT’s
anatomy, allowing for a precise digital representation. This
information aids in creating accurate simulations of physio-
logical structures and functions within the VT. Besides, by
integrating this data, the VT can simulate and predict the
progression of diseases. However, existing medical imaging
acquisition methods rely on medical imaging devices, such as
MRI or computed tomography (CT) scanners, which encounter
high costs, patient discomfort, and safety concerns. To this
end, GAI can generate synthetic medical images, augmenting

existing datasets without additional patient scans. For instance,
Moghadam et al. in [61] proposed a diffusion model-based
approach for the synthesis of histopathology images, as shown
in Fig. 4. Specifically, the authors used color normalization to
force the diffusion model-based approach to learn morphologi-
cal patterns, and used perception prioritized weighting, aiming
to prioritize focusing on diffusion stages with more impor-
tant structural histopathology contents. Experimental results
showed that the proposed approach outperformed the GAN-
based approach proposed in [62] by generating high quality
histopathology images of brain cancer. Similarly, Yoon et al. in
[63] proposed a sequence-aware diffusion model (SADM) for
the generation of longitudinal medical images. SADM used
a sequence-aware transformer as the conditional module in
the diffusion model. This enabled learning longitudinal de-
pendency even with missing data during training and allowed
autoregressive generation of a sequence of medical images
during inference. Experimental results showed that SADM
can generate high quality longitudinal cardiac and brain MRI.
While GAN and diffusion model made remarkable progress
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The forward (0 to T) and reverse (T to 0) diffusion process.
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RGB axes illustrates the 
orientation of the head 
and hands which are 
obtained from HMDs 
and hand controllers 

and serve as the input.

Full body motion 
synthesis based on 

HMD and hand 
controllers input.

Fig. 5. Overview of AGRoL proposed in [67]. It takes the orientations of the head and hands from HMDs and hand controllers as the input. These input
processed by AGRoL. The architecture of AGRoL is presented in the middle of this figure, where t is the noising step. x1:N

t denotes the motion sequence of
length N at step t, which is pure Gaussian noises when t = 0. p1:N denotes the sparse upper body signals of length N . x̂1:N

t denotes the denoised motion
sequence at step t. The output is the synthesized full body motion.

in medical image generation, they cannot explicitly learn the
probability density function of the input data and are highly
sensitive to the hyperparameter selections. To mitigate these
issues, Hajij et al. in [49] investigated normalizing flows (NFs)
based approach as an alternative for synthesizing medical
images. Particularly, the authors trained a RealNVP [64],
a popular NF model for medical image synthesis, on two
medical imaging datasets: chest X-ray [65] and skin cancer
[66]. The experimental results showed that the NF-based
medical image synthesis approach is an attractive alternative
to GAN-based and diffusion model-based approaches.

The motion data is significant for HDT, which can be
used to model and simulate a PT’s entire body posture and
movements in the digital space. Motion modeling in HDT
can enable critical HDT services, such as motion monitoring
during rehabilitation and injury prediction during exercise. Ex-
isting motion data acquisition mainly through wearable devices
[8], which has several drawbacks hindering the complete and
accurate motion data acquisition. For example, humans may
not always be equipped with a large number of motion sensors
for acquiring comprehensive motion data, which results in the
acquired data can only characterize partial motion. Moreover,
issues related to signal transmission, such as poor connectivity,
signal interference, or obstructions caused by complex human

mobility, can result in data loss or corruption during trans-
mission. In this regard, GAI has been successfully applied in
motion data synthesis, which can be a promising solution. For
instance, Dittadi et al. in [40] proposed a VAE-based approach
to generate full-body motion based on an impoverished control
signal coming from HMDs. Specifically, to reconstruct the
articulated poses of a human skeleton from noisy streams
of head and hand pose, the authors proposed VAE-based
approach decomposed the problem into a generative model
of human pose, with an inference model that mapped input
signals into the learned latent embedding. Experiment results
showed that the proposed approach can faithfully reconstruct
the walking motion of the person wearing an HMD. Addition-
ally, to accelerate the motion generation rate to meet online
application requirements, Du et al. in [67] proposed a diffusion
model-based approach, called avatars grow legs (AGRoL),
to generate the full-body poses conditioned on the sparse
tracking signals from HMDs, as shown in Fig. 5. To enable
gradual denoising and produce smooth motion sequences, the
authors proposed a block-wise injection scheme that added
diffusion timestep embedding before every intermediate neural
network block. With this timestep embedding strategy, AGRoL
achieved SOTA performance on the full-body motion synthesis
task without any extra losses that were commonly used in other
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TABLE IV
SUMMARY OF GAI-BASED APPROACH FOR COMMUNICATION IN HDT.

Ref. Focus Limitation of Traditional Methods GAI-based Solution

[70]
Massive data 
transmission

High bandwidth consumption, more 
latency, and experience with bad QoS

Proposed a GAN-based semantic communication framework to 
transmit images or videos, where the proposed pix-to-pix GAN was 

used to reconstruct and denoise the received frames

[72]
Proposed a diffusion model-based semantic communication, where 

a semantic diffusion model was designed to reconstruct 
photorealistic images at the receiver side

[73]
Cross-modal 
information 

transmission
Missing signals and distortion

Proposed a GAN-based approach to transform the images into the 
corresponding haptic signals

Proposed the cross-domain GAN, DiscoGAN, to generate the 
desired haptic spectrograms belonging to corresponding category[74]

[75] Proposed a VAE-based approach for bidirectional mapping between 
visual and haptic signals

motion prediction methods. In addition, due to the lightweight
architecture, AGRoL can generate realistic, smooth motions
while achieving real-time inference speed, making it suitable
for online applications.

In summary, Generative AI offers promising solutions to
address the limitations of current data acquisition methods in
HDT by generating diverse and high-realistic datasets.

B. GAI-enabled Communication

HDT relies on real-time data transmission to keep synchro-
nization between any PT-VT pair to ensure high-fidelity of VT
[8]. This synchronization is, however, data-driven and delay-
sensitive. Furthermore, data acquired in the physical world is
often massive and complex. In addition to real-time synchro-
nization, interacting with VTs involves more complex infor-
mation that needs to be transmitted between the PT and users
in the physical world. Multi-modal information, such as 3D
virtual items, text, images, haptic signals, among others, needs
to be transmitted in HDT under various applications, such
as the virtual surgery, to enhance the immersive experience.
These specific characteristics place a significant burden on
current communication networks. To address these issues, this
subsection delves into the GAI-aid semantic communication
[52] and cross-modal communication [54] for communication
in HDT, as summarized in Table IV.

Semantic communication is expected to enable the data
transmission between the PT and VT pair in HDT, tackling the
challenges of unnecessary transmission of vast amounts that
cause high bandwidth consumption, more latency, and expe-
rience with bad quality of service (QoS) by only transmitting
meaningful and task-oriented information extracted from the
original information [68], [69]. Generally, semantic communi-
cation extracts the “meaning” of any transmitted information
at the transmitter and encodes the extracted features. Then, this
semantic information is transmitted to the intending receiver
and is “interrupted ” and decoded by the receiver. GAI with
its creativity is applied in receiver side to reconstruct the
original information from the received semantic information.
For instance, Raha et al. in [70] proposed a GAN-aid semantic
communication framework for transmitting images or videos.
Specifically, by considering resource limitations inherent in

edge devices, such as HMDs, and the need for low-latency
transmission in HDT applications, such as the real-time PT-
VT synchronization task, the authors utilized a lightweight
mobile segment anything model [71] for essential semantic
information extraction from the images or videos. Then, on
the receiver side, the authors proposed a pix-to-pix GAN
approach to reconstruct and denoise the received semantic
frames. The simulation results showed that the proposed
framework can reduce up to 93.45% of the communication
cost while maintaining the original information. In addition to
GAN-aid semantic communication, the diffusion model with
strong synthesizing multimedia content abilities has also been
applied in this field. For example, Grassucci et al. in [72]
introduced a semantic diffusion model designed to reconstruct
photorealistic images at the receiver side. This model was
trained using noisy semantics and incorporated a fast denoising
semantic block to enhance the quality of inferred images. Con-
sequently, the receiver can reconstruct semantically-consistent
samples from the compressed semantic images transmitted
by the sender over a noisy channel. These methods can be
applied in HDT for rehabilitation training to reduce bandwidth
usage and latency. The cameras are utilized to capture the
patient’s motion, and from the captured extensive images
or videos, semantic features are extracted. Subsequently, the
highly-compressed semantic information is transmitted to the
digital world, where GAI is employed to regenerate the
images or videos, and then, synchronizing the motion of the
corresponding VT. This approach enables real-time monitoring
and analysis of rehabilitation conditions [13], [69].

The interactions in HDT applications, such as virtual
surgery, commonly involve with audio, visual and haptic
signals to provide users with human interactive and immer-
sive experiences. To support such interactions within HDT,
cross-modal communication [54], which involves collaborative
audio-visual and haptic interactions, presents a promising solu-
tion. It adeptly resolves the distinct requirements among these
modalities when they coexist. However, long transmission
distance between the physical and digital world or possible
poor network conditions may result in missing signals and
distortion, negatively impacting the users’ experiences. To this
end, researchers have explored using GAI to enable cross-
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modal signal reconstruction within the cross-modal communi-
cation to compensate for defective signals and achieve high-
fidelity communication. For instance, by fully using of the
correlation between image and haptic modalities, Liu et al.
in [73] proposed a GAN-based approach to transform the
images into the corresponding haptic signals. Specifically,
the authors extract the image features firstly to obtain the
required category information. Then, they adopted the cross-
domain GAN, DiscoGAN [74], to generate the desired haptic
spectrograms belonging to that category. In addition to cross-
modal unidirectional mapping illustrated above, the cross-
modal bidirectional mapping is investigated to enhance the
cross-modal signal reconstruction. For example, Fang et al.
in [75] proposed a VAE-based approach for bidirectional
mapping between visual and haptic signals. Specifically, the
authors firstly adopted the visual VAE model and the haptic
VAE for compressing visual and haptic data, respectively.
Then, they employed a conditional flow model to connect the
latent feature spaces of these two VAE models. The forward
process of the flow model was the mapping from the haptic to
the visual latent feature space, while the reverse process was
the mapping from the visual to the haptic latent feature space.
Based on this, the cross-modal bidirectional mapping between
visual and haptic signals can be successfully implemented on
one model. These GAI-aid cross-modal communication ap-
proaches are crucial for cross-modal interactions in HDT. For
example, during virtual acupuncture training, when a doctor
interacts with a patient’s VT, haptic signals may be missed
or distorted due to the degraded channel conditions, while the
visual signals are successfully received by the doctor’s VR
device [76]. To provide the immersive experience, the GAI-
aid haptic signal reconstruction approach can be utilized to
reconstruct the haptic signals from the visual signals.

C. GAI-enabled Data Management
Data management is a crucial step in the successful im-

plementation of HDT. First, the collected multi-source data
in HDT may have the characteristics of heterogeneity, multi-
scale and high noises. Hence, as the critical step in data
management, data pre-processing is indispensable in HDT,
such that issues like missing data and noise data can be
properly handled, and thereby providing high-quality data
for downstream tasks in HDT [8]. Moreover, the data in
HDT are highly sensitive, especially for individual-level data,
and any leakage may result in serious ethical and moral
concerns. Therefore, effective security and privacy schemes
are imperative to protect data in HDT. In the following, we
will discuss the application of GAI in data pre-processing,
followed by its application in security and privacy schemes,
as summarized in Table V.

Traditional data imputation methods, such as K-nearest
neighbors-based [77] and deep learning-based imputation [78],
often rely on existing observed data for modeling and pre-
diction, and cannot directly generate new data samples. This
will make it hard for traditional data imputation methods
to handle missing severe data issues, such as data modality
missing. To this end, GAI, with its powerful generative ca-
pabilities, can effectively handle the missing data issues in

HDT. For instance, with the potential of substituting missing
data accurately and efficiently, Dong et al. in [79] used GAN
to impute missing values in large clinical datasets collected
from PTs with mixed-type variables. Specifically, the method
adopted by authors was generative adversarial imputation nets
(GAIN), where the generator observed some components of
a real clinical data vector, imputed the missing components
conditioned on what was actually observed, and outputs a
complete clinical data vector. The discriminator then took a
completed clinical data vector and attempted to determine
which components were observed and which were imputed.
Additionally, to ensure that discriminator forced generator
to learn the desired data distribution, the authors provided
discriminator with some additional information in the form
of a hint vector. The experimental results showed that GAIN
outperformed the traditional imputation models, MICE [80]
and missForest [81], in terms of accuracy in the imputation of
missing data in clinical datasets, particularly for imbalanced
and skewed data, and when the missingness rate was high
(50%). Acquiring multi-modality data is crucial for the imple-
mentation of HDT. However, the missing modalities may hap-
pen in some conditions, such as failure in data transmission.
Fortunately, diffusion models have shown favorable results for
generating missing modalities utilizing cross-modalities and
producing ones using other modality types. For instance, Lyu
et al. in [82] proposed a GAI framework, called diffusion
and score-matching models, which took advantage of the
recently introduced denoising diffusion probabilistic models
(DDPMs) [83] and score-based diffusion models [84], for
translating MRI to CT. Specifically, they presented conditional
DDPM and conditional stochastic differential equation (SDE)
[85], where their reverse process was conditioned on T2w
MRI images. The authors adopted the DDPM and SDE with
three different sampling methods, namely Euler-Maruyama,
Prediction-Corrector, and probability flow ordinary differential
equation. Their extensive experiments on the Gold Atlas male
pelvis dataset [86] demonstrated that the proposed diffusion
models outperformed both GAN and CNN-based methods [87]
regarding structural similarly index measure and peak signal-
to-noise ratio. Similarly, to cope with the missing modality
issue, Meng et al. in [48] proposed a unified multi-modal
conditional score-based generative approach (UMM-CSGM),
which synthesized the missing modality based on all remaining
modalities as conditions. The proposed model was a condi-
tional SDE format, employing only a score-based network
to learn different cross-modal conditional distributions. The
experimental results showed that the UMM-CSGM could
generate missing-modality images with higher fidelity and
structural information of the brain tissue compared to GAN-
based methods [88]–[92].

Noise data is a common issue during the data acquisition
in HDT. Noise reduces the data quality and is especially
significant when the point of interests are minor and have
relatively low contrast, which hinders the downstream tasks in
HDT [93]. Traditional data denoise methods, such as CNN-
based [94] and U-Net-based methods [95], highly rely on
a significant amount of labeled training data to build the
denoising models. However, obtaining such data is challeng-
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TABLE V
SUMMARY OF GAI-BASED APPROACH FOR DATA MANAGEMENT IN HDT.

Ref. Focus Limitation of Traditional Methods GAI-based Solution

[79]

Data imputation Lack of generative capability

Proposed the generative adversarial imputation nets to impute 
missing values in large clinical datasets collected from PTs with 

mixed-type variables

[82] Proposed a GAI framework, called diffusion and score-matching 
models, to translate MRI to CT

[48]
Proposed a unified multi-modal conditional score-based generative 

approach, to synthesize the missing modality based on all 
remaining modalities as conditions

[47]
Data denoise Require massive labeled training data

Proposed a diffusion model-based framework for PET denoising, 
called PET-DDPM

[97] Proposed a diffusion model-based denoising method, called 
denoising diffusion models, to denoise diffusion MRI

[100]
Data security 
and privacy

Difficult to balance between data 
privacy and usability 

Proposed  a GAN-based framework to generate synthetic data for 
anonymization of EHR data while closely approximating the 

distribution of original HER data

[104] Proposed  a GAN-based framework, EHR-Safe, to generate EHR 
data while guaranteeing fidelity and privacy 

ing, especially at the individual level. To this end, with the
strong generative abilities of GAI, it is convenient for diverse
denoising problems in HDT data. For instance, PET is a
medical imaging technique used to detect metabolic activities
within the human body. The information provided by PET can
be used to update or calibrate the VT models. However, due to
various physical degradation factors, PET often suffers from
low signal-to-noise ratio (SNR) and resolution. To denoise
the PET images, a DDPM-based method has been proposed
for PET image denoising. Gong et al. in [47] proposed
the DDPM-based framework for PET denoising, called PET-
DDPM, which collaborated with an assistive modality embed-
ding as prior information to DDPM formulation. Quantitative
results demonstrated that PET-DDPM outperformed U-Net
based denoising networks [96] in peak SNR and structural
similarity index measure, showcasing its superior performance
in PET denoising. For denoising MRI that with severely SNR-
limited, Xiang et al. in [97] proposed a self-supervised denois-
ing method, called denoising diffusion models for denoising
diffusion MRI (DDM2). Specifically, their approach consisted
of three stages, which integrated statistic-based denoising
theory into diffusion models and performed denoising through
conditional generation. During inference, they represented
input noisy measurements as a sample from an intermediate
posterior distribution within the diffusion Markov chain. Ulti-
mately, their trained diffusion model can produce clean MRI
images unsupervised.

HDT environments may suffer from various security threats,
such as eavesdropping attacks in data transmission between
PTs and VTs causing privacy leakage. A typical privacy
protection mechanism for HDT data is anonymization [98],
[99]. However, this method can easily compromise the data
distribution, and it is hard to balance data privacy and us-
ability. To this end, GAI can generate synthesized HDT data,
which maximally preserves original data distribution while
guaranteeing data security and privacy. For instance, to lower
the risk of breaching individual confidentiality during data
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Fig. 6. Block diagram of ADS-GAN for individual EHR anonymization [100].
The generator uses original sample (x) and random vector (z) to generate
sample (x̂). The summation of distribution loss (LD) and identifiability loss
(LI) is back-propagated to the generator. Both the generator and discriminator
are implemented with multi-layer perceptrons.

sharing in HDT, Yoon et al. in [100] proposed a GAN-
based framework, called anonymization through data synthesis
using GAN (ADS-GAN), for generating synthetic data that
closely approximates the distribution of variables in an original
EHR dataset, achieving anonymization of EHR, as shown in
Fig. 6. Specifically, ADS-GAN generated the synthetic data
conditioned on the original data, and different from traditional
conditional GAN framework, conditioning variables in ADS-
GAN were not pre-determined but instead were optimized
from real EHR. Therefore, the ADS-GAN can generate better
quality synthetic data than the traditional conditional GAN
frameworks [87], [101]–[103] while minimizing individual
identifiability. However, such methods have limitations re-
garding the fundamental aspects of real-world EHR data,
such as dealing with missing features, varying feature length,
categorical features and static features (beyond time series).
These fundamental challenges require a holistic re-design in
GAN-based synthetic data generation systems. To this end,
Yoon et al. in [104] further designed, EHR-Safe, that can
jointly represent these diverse data modalities while preserving
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TABLE VI
SUMMARY OF GAI-BASED APPROACH FOR DIGITAL MODELING IN HDT.

Ref. Focus Limitation of Traditional Methods GAI-based Solution

[107]

Digital modeling 
of human cells

Require massive and accurate 
simulation parameters, which are 

particularly challenging to acquire from 
biological entities in the human body 

Proposed a VAE-based cell DT, scGen, for predicting transcriptional 
response to drug perturbations

[109] Proposed a VAE-based cell DT to predict cell morphology by 
generating cell images

[44] Proposed a transformer-based cell DT, scGPT, to facilitated the 
modeling of various aspects of cellular processes

[111] Digital modeling 
of human 
tissues

Proposed a GAN-based tissue DT, PathologyGANs, for simulating 
the morphological characteristics of cancer tissue

[38] Proposed a GAN-based tissue DT, ScarGAN, to simulate the 
pathology of scar tissue on healthy myocardium

[115] Digital modeling 
of human 
organs

Proposed a GAN-based organ DT, ReconGAN, to predict the risk of 
vertebral fracture

[117] Proposed a GAN-based cardiac DT to synthesize and simulate 
myocardial velocity

the privacy of EHR data. Specifically, EHR-Safe was based
on a two-stage model that consisted of sequential encoder-
decoder networks and GANs. To circumvent the heterogeneity
of EHR data mentioned above, the authors used the sequential
encoder-decoder networks to learn the mapping from the raw
EHR data to low-dimensional representations and vice versa,
and the mapped information is used for GAN training. The
experimental results showed that the fidelity of synthetic data
generated by EHR-Safe is almost-identical with real data,
while yielding ideal performance in practical privacy metrics.

In summary, GAI is a promising technique for data man-
agement in HDT, handling data pre-processing and security
and privacy issues.

D. GAI-enabled Digital Modeling

In HDT, digital modeling refers to digitally model the PT
and virtualized in the digital world based on the acquired data
and various digital modeling technologies, forming the VT.

The classic HDT digital modeling technology, mechanis-
tic modeling, has pioneered the integration of biology and
physiology domain knowledge to allow robust and accurate
modeling [105]. For instance, a human heart DT model
has been developed, which consisting of approximately 100
million virtual heart cell patches, with each patch modeled by
around 50 equations [106]. The human heart DT accurately
represented the interconnected cardiac muscle cells, effectively
simulating the transmission of electrical currents through these
cells and the subsequent initiation of the heartbeat. However,
as the human heart DT, mechanistic modeling requires massive
and accurate simulation parameters, which are particularly
challenging to acquire from biological entities in the human
body, i.e., from molecular to organ level, and are typically
limited to only a subset of all available biomolecular [105].
GAI techniques can overcome these challenges, through learn-
ing the underlying distribution and sequential or temporal
relations of data for modeling. In the following, we provide
a survey of the application of GAI in HDT digital modeling,
including digital modeling of human cells, tissues and organs,
as summarized in Table VI.

First, GAI techniques have shown their strong abilities in
digitally modeling human cells. For instance, Lotfollahi et al.
in [107] built a VAE-based cell DT, scGen, for predicting
transcriptional response to drug perturbations. Specifically,
scGen combined VAE and latent space vector arithmetics for
high-dimensional sing-cell gene expression data. scGen can
accurately model perturbation and infection response of cells
across cell types. The results of the simulations showcased that
scGen successfully learned cell-type responses, indicating its
ability to capture distinguishing features between responding
and non-responding genes and cells. Furthermore, the simula-
tion results provided evidence for the enhanced generalization
capabilities of scGen compared to mechanistic modeling ap-
proaches, which are typically tailored to specific cellular set-
tings. In addition, the authors further developed another VAE-
based cell DT, compositional perturbation autoencoder (CPA),
to predict cellular response to unseen drugs, drug combinations
and dosages in high-throughput screens [108]. CPA combined
the interpretability of linear models with the flexibility of
deep learning approaches for single-cell response modeling.
The authors envisioned that with the accurate modeling of the
cell, CPA will accelerate therapeutic applications using single-
cell technologies. Similarly, Donovan-Maiye et al. in [109]
developed a VAE-based cell DT to predict cell morphology
by generating cell images. Specifically, they employed stacked
conditional β-VAE to first learn a latent representation of
cell morphology, and then learn a latent representation of
subcellular structure localization which is conditioned on the
learned cell morphology under treatment. Inspired by parallels
between linguistic constructs and cellular biology, where text
comprises words, similarly, cells are defined by genes, pre-
trained transformers are envisioned to model the cell DT.
Cui et al. in [44] developed a transformer-based cell DT,
scGPT, a generative pre-trained foundation model that har-
nessed the power of pre-trained transformers on a vast amount
of single-cell sequencing data, as shown in Fig. 7. The use of
transformers in scGPT enabled the simultaneous learning of
gene and cell embeddings, which facilitated the modeling of
various aspects of cellular processes. In addition, by leveraging
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the attention mechanism of transformers, scGPT captures
gene-to-gene interactions at the single-cell level, providing an
additional layer of interpretability.

GAI has been successfully applied in the digital modeling
of human tissues for digital pathology [110]. For instance,
Quiros et al. in [111] developed a GAN-based tissue DT,

PathologyGANs, for simulating the morphological character-
istics of cancer tissue. Specifically, PathologyGANs combined
BigGAN [112], StyleGAN [113], and relativistic average
discriminator [114] to learn representations of entire tissue
architecture. Then, they used these characteristics to structure
PathologyGANs’ latent space (e.g., color, texture, spatial fea-
tures of cancer and normal cells, and their interaction). Thus,
PathologyGANs can generate high-fidelity cancer tissue im-
ages from the structured latent space. The simulation showed
that the quality of the generated cancer tissue images did not
allow pathologists to reliably find differences between real
and generated images. It indicated that the proposed GAN-
based tissue DT can accurately characterize the features of
cancer tissues. To reduce the frequent need to collect scans
from patients, Lau et al. in [38] built a GAN-based tissue DT,
ScarGAN, to simulate the pathology of scar tissue on healthy
myocardium, as shown in Fig. 8. Specifically, ScarGAN was
based on chained GAN, and the simulation process included
3 steps: i) a mask generator to simulate the shape of the scar
tissue; ii) a domain-specific heuristic to produce the initial
simulated scar tissue from the mask; iii) a refining generator
to add details to the simulated scar tissue. The experimental
results conducted by the authors showed that ScarGAN can
high realistically simulate scar tissue on normal scans, such
that experienced radiologists could not distinguish between
real and simulated scar tissue.

GAI has been used in the digital modeling of human organs
for computationally reproducing normal and pathological or-
gan function and treatment effect. For instance, Ahmadian et
al. in [115] built a GAN-based organ DT, coined ReconGAN,
to predict the risk of vertebral fracture (VF). Specifically,
ReconGAN consisted of a deep convolutional GAN (DCGAN)
[116], image-processing steps, and finite element (FE) based
shape optimization to reconstruct the vertebra model. The syn-
thetic trabecular microstructural models generated by DCGAN
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were infused into the vertebra cortical shell extracted from
the patient’s diagnostic CT scans using an FE-based shape
optimization approach to achieve a smooth transition between
trabecular to cortical regions. The final geometrical model of
the vertebra was converted into a high-fidelity FE model to
simulate the VF response using a continuum damage model
under compression and flexion loading conditions. The exper-
iments implemented by the authors demonstrated that the built
GAN-based vertebra DT can accurately simulate and predict
the risk of VF in a cancer patient with spinal metastasis. As the
core organ of human bodies, the GAI aided human heart digital
modeling has also been investigated. For instance, to overcome
the long acquisition time and complex acquisition of cardiac
data, Xing et al. in [117] developed a GAN-based cardiac
DT, hybrid deep learning (HDL), to synthesize and simulate
myocardial velocity maps from real-world three-directional
CINE multi-slice myocardial velocity mapping (3Dir MVM)
data. Specifically, the HDL was featured by a hybrid UNet
and a GAN with a foreground-background generation scheme.
The experimental results demonstrated that the synthetic 3Dir
MVM data generated from the HDL algorithm can accurately
and quantitatively assess the cardiac motion in three orthogo-
nal directions of the left ventricle.

In summary, the data-driven GAI based digital modeling
can effectively overcome the shortcomings of mechanistic
modeling, including requiring accurate simulation parameters
and sufficient prior domain knowledge. Therefore, GAI is a
promising technique for digital modeling of HDT.

E. GAI-enabled Data Analysis

Data analysis is the crucial component in HDT, which
analyzes the data collected from the physical world and the
data generated in the digital world. The results from data
analysis are essential information in providing HDT services,
such as diagnosis and prescription. Traditional data analysis
methods, such as CNN-based [118] and U-Net-based methods
[119], highly rely on a large amount of labeled data and
difficult in handling high-dimensional HDT data. To this end,
GAI has showcased remarkable potential in data analysis,
including classification, segmentation, anomaly detection and
prediction, as summarized in Table VII.

The data classification is crucial for HDT services, such as
early prevention and diagnosis of diseases. For example, when
doctors remotely diagnose a patient through the patient’s VT,
classification models can quickly and automatically identify
and classify the patient’s diseases. Recent studies have shown
the potential of the GAI-based methods in this field. For in-
stance, Dhinagar et al. in [120] investigated vision transformer
(ViT) architecture for high-stakes neuroimaging downstream
tasks, focusing on Alzheimer’s disease classification based on
3D brain MRI. The authors evaluated the effects of different
training strategies including pre-training, data augmentation
and learning rate warm-ups followed by annealing, and em-
phasized the importance of these strategies in neuroimaging
applications. Similarly, Dong et al. in [121] proposed a ViT-
based end-to-end multi-label arrhythmia classification model,
called CNN-DVIT, for the 12-lead ECG with varied-length
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Fig. 9. Overview of the GAI-based classification model, CNN-DVIT, pro-
posed in [121]. It is able to take continuous 12-lead ECG signals as input and
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for feature extraction from each lead; (b) a deformable attention transformer
encoder module to combine the CNN-extracted features and the positional
encoding; and (3) the classification layer to obtain the probability that each
patient may have for each type of heart disease.

recordings, as shown in Fig. 9. Specifically, CNN-DVIT was
based on a combination of CNN with depthwise separable
convolution, and a ViT architecture with deformable attention.
Besides, the authors introduced the spatial pyramid pooling
layer to accept varied-length ECG signals. Experimental re-
sults showed that CNN-DVIT outperformed the most recent
transformer-based ECG classification methods [122].

Data segmentation play a crucial role in data analysis within
the realm of HDT. Segmentation allows complex HDT data
to be subdivided and analyzed to extract critical information.
For instance, through image segmentation, the different re-
gions and structures within an image can be separated, such
as organs and tumors. This facilitates quantitative analysis
and measurements, such as measuring organ volumes and
calculating tumor growth rates. This important information
can be provided for HDT’s subsequent services, such as
surgical planning, treatment plans and diagnosis. GAI has
been successfully implemented in this field. It is worth note
that , for data analysis in HDT, analyzing organs or other
human structures from medical images is not a determinis-
tic pixel-wise process, but underlies the assessment of the
whole image or, on smaller scale, assessing the neighbor-
ing pixels’ diversity. In this regard, Rahman et al. in [123]
leveraged the stochastic sampling step in the diffusion model
to produce diverse and multiple masks. Specifically, the au-
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TABLE VII
SUMMARY OF GAI-BASED APPROACH FOR DATA ANALYSIS IN HDT.

Ref. Focus Limitation of Traditional 
Methods GAI-based Solution

[120]
Data 

classification

Require a large amount of labeled 
data and difficult in handling high-

dimensional HDT data

Proposed a vision transformer architecture for Alzheimer's disease 
classification based on 3D brain MRI

[121]
Proposed a vision transformer-based end-to-end multi-label 

arrhythmia classification model, CNN-DVIT, for the 12-lead ECG 
with varied-length recordings

[123]
Data 

segmentation

Proposed a diffusion model-based ambiguous segmentation 
network, collectively intelligent medical diffusion, that can generate 

multiple plausible annotations from a single input image

[124] Proposed a diffusion adversarial representation learning model for 
self-supervised vessel segmentation

[125]

Anomaly 
detection

Proposed a cascade VAE-based anomaly detector for outlier 
detection in medical images

[126] Proposed an auto-encoding GAN framework for anomaly detection 
in chest radiographs

[127] Proposed a weakly supervised anomaly detection method based on 
denoising diffusion implicit models

[41]
Prediction

Proposed a β-VAE based HDT to forecast clinical measurement 
trajectory in patients who went on to experience an ischemic stroke

[130] Applied BERT-based models to ophthalmology clinical text from 
EHR, predicting the progression of glaucoma

thors introduced a single diffusion model-based ambiguous
segmentation network, called collectively intelligent medical
diffusion (CIMD), that can generate multiple plausible an-
notations from a single input image. The CIMD utilized the
noisy segmentation ground-truth masks concatenated to the
original image to prevent the conventional diffusion process
usage in the segmentation task from producing more resilient
results, rather than arbitrary masks. The authors validated the
CIMD in three different medical image modalities, namely
CT, ultrasound and MRI. The experimental results showed that
CIMD outperformed existing SOTA ambiguous segmentation
networks in terms of accuracy while preserving naturally
occurring variation. Similarly, Kim et al. in [124] proposed
a diffusion adversarial representation learning (DARL) model,
which leveraged a denoising diffusion probabilistic mode with
adversarial learning, for self-supervised vessel segmentation,
aiming to diagnose vascular diseases and treatment planning,
as shown in Fig. 10. Specifically, DARL model consisted
of two main modules, where the diffusion module learned
background image distribution, and the generation module
generated vessel segmentation masks or synthetic angiograms
using the proposed switchable spatially-adaptive denormal-
ization algorithm. Experimental results showed that DARL
model significantly outperforms existing unsupervised and
self-supervised vessel segmentation methods.

In the context of HDT, anomaly detection for HDT data
plays a critical role. Anomaly detection helps identify ab-
normal patterns or conditions in HDT data early, enabling
proactive health alerts from HDT and timely intervention
before a condition deteriorates. GAI has been successfully
implemented in this field. For instance, Guo et al. in [125]
designed a cascade VAE-based anomaly detector (CVAD) for
outlier detection in medical images. Specifically, with a focus

on the generalizability of anomaly detector, CVAD combined
latent representation at multiple scales, before being fed to a
discriminator to distinguish the out-of-distribution (OOD) data
from the in-distribution data. The reconstruction error and the
OOD probability predicted by the binary discriminator were
used to determine the anomalies. Extensive experiments on
multiple intra- and inter-class OOD medical imaging datasets
showed CVAD’s effectiveness and generalizability. The GAN-
based approaches are also successfully applied in anomaly
detection. For instance, Nakao et al. in [126] designed an
auto-encoding GAN (α-GAN) framework, which was a com-
bination of a GAN and a VAE, for anomaly detection in chest
radiographs. The experimental results showed that α-GAN can
correctly visualize various lesions including a lung mass, car-
diomegaly, pleural effusion, bilateral hilar lymphadenopathy,
and even dextrocardia. However, the VAE-based and GAN-
based anomaly detection methods are often complicated to
train or have difficulties to preserve fine details in the medical
images [127]. To this end, Wolleb et al. in [127] proposed
a weakly supervised anomaly detection method based on
denoising diffusion implicit models (DDIMs) [45]. Specifi-
cally, the authors combined the deterministic iterative noising
and denoising scheme with classifier guidance for image-to-
image translation between diseased and healthy subjects. The
authors applied this method on two different medical datasets,
namely BRATS2020 brain tumor datasets and the CheXpert
datasets [128]. Experimental results showed that this method
can preserves details of the input image unaffected by the
disease while realistically representing the diseased part.

Prediction plays a critical role in data analysis, which can
provide informed information for HDT services. For instance,
the disease progression and drug response can be predicted
in patient’ VTs based on HDT data. With this, doctors can
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optimize the intervention and design the customized treatment
plans for patients. GAI has been successfully implemented in
this field. For instance, Allen et al. in [41] proposed a β-
VAE based HDT to forecast clinical measurement trajectory
in patients who went on to experience an ischemic stroke.
Specifically, the β-VAE based HDT model was used to gener-
ate possible next steps in a patient’s disease progression. The
model was trained on data extracted from the medical informa-
tion mart for intensive care-IV database [129]. The database
contains 1216 patients with useable trajectories that experi-
enced ischemic stroke. Experimental results demonstrated that
the model can accurately forecast the progression of relevant
clinical measurements in patients at risk of ischemic stroke,
which was virtually indistinguishable from real patient data.
Additionally, transformer-based approaches have also been
used in prediction of disease progression. For instance, Hu
et al. in [130] applied four BERT-based models, including the
original BERT [131], BioBERT [132], RoBERTa [133], and
DistilBERT [134], to ophthalmology clinical text from EHR,
predicting the progression of glaucoma. Experiment results
showed that these four BERT-based models outperformed
clinical predictions by an ophthalmologist’s review of the
same clinical information. The authors qualitatively evaluated
the BERT-based models by performing explainability studies
based on the self-attention mechanisms of the BERT-models.
Based on this, the authors can evaluate what types of words
were most important for predictions.

In summary, GAI is a key enabling technology for data
analysis in HDT, analyzing the HDT data for classification,
segmentation, anomaly detection and prediction.

IV. GAI-DRIVEN HDT IN IOT-HEALTHCARE
APPLICATIONS

The remarkable capabilities of GAI-driven HDT in a wide
range of IoT-healthcare applications, including personalized
health monitoring and diagnosis, prescription, and rehabilita-
tion. In this section, we will delve into the details of these
IoT-healthcare applications, exploring how GAI-driven HDT
is revolutionizing each of them.

A. Personalized Health Monitoring and Diagnosis

The GAI for HDT can be applied in personalized health
monitoring and diagnosis. By leveraging the robust data
analysis capabilities, GAI can analyze collected patient data
in HDT, enabling anomaly detection for personalized health
monitoring and diagnosis, as shown in Fig. 11. For example, a
VT continuously receives data streams from its corresponding
PT, namely the patient, encompassing vital metrics like heart
rate, blood pressure, and ECG signals, etc. Utilizing GAI,
the VT can analyze this data, identifying deviations from
expected norms, such as cardiac irregularities or other health
concerns. Detected anomalies trigger alerts to the patient
and healthcare providers, signaling potential irregularities or
cardiac issues. Consequently, GAI for HDT is a personalized
health monitoring system that delivers timely health warnings.

GAI has been successfully applied in anomaly detection
from the collected patient data in HDT. For example, Wang et
al. in [135] proposed a GAN-based approach for ECG signal
analysis, achieving automatic cardiac diagnosis, as shown in
Fig. 11. Specifically, the proposed approach involved two-
level hierarchical deep learning framework with GAN. The
first-level model was composed of a memory-augmented deep
autoencoder with GAN (MadeGAN), which aimed to differ-
entiate abnormal signals from normal ECGs for anomaly de-
tection. The second-level learning aimed at robust multi-class
classification for different arrhythmia identification, which
was achieved by integrating the transfer learning technique
to transfer knowledge from the first-level learning with the
multi-branching architecture to handle the data-lacking and
imbalanced data issues. Experimental results showed that the
proposed approach can effectively capture the disease-altered
feature patterns from ECG signals, yielding better performance
in predicting heart disease compared to other existing methods.
Moreover, this hierarchical deep learning framework can be
broadly implemented to study other patient data, such as
EEG and PPG, for smart anomaly detection. Following this,
Another GAI technique, VAE, has been applied in this field.
Staffini et al. in [136] proposed a disentangled VAE with
a bidirectional LSTM (BiLSTM) backend to detect in an
unsupervised manner anomalies in heart rate data collected
during sleep time with a wearable device. Specifically, the
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Fig. 11. The application of GAI-driven HDT in the personalized health monitoring and diagnosis, where the GAN-based approach, proposed in [135] is
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added BiLSTM backend to the VAE model allowed it to
capture contextual relationships in VAE-processed heart rate
sequences by analyzing the information flow’s forward and
backward directions. The proposed approach can better model
the considered time series and learn more accurate patterns.
Experimental results showed that the proposed approach out-
performed five well-known algorithms in terms of anomaly
detection from the heart rate data.

Beyond cardiac diseases, GAI has demonstrated successful
applications in anomaly detection for monitoring and diagnos-
ing other conditions like breast cancer [137] and Alzheimer’s
[138]. These advancements utilize diverse patient data col-
lected within HDT. Thus, GAI-driven HDT holds the promise
of delivering precise, timely, and proactive personalized health
monitoring and diagnosis, significantly enhancing patient care
and overall well-being.

B. Personalized Prescription

The GAI-driven HDT can be applied in the personalized
prescription. GAI empowers the HDT to predict and simulate
treatment outcomes, enabling personalized prescription, as
shown in Fig. 12. For instance, considering an Alzheimer’s
patient’s VT, doctors can virtually test various candidate
drugs on the VT. Then, leveraging GAI within the VT, the
interactions of each drug with the patient’s Alzheimer’s disease
can be predicted and simulated. Upon deriving insights from
the GAI-driven HDT, doctors can pinpoint the most effective
drug tailored to the patient’s specific health profile.

GAI has been successfully applied in treatment outcome
predictions and simulations inside the HDT for personalized
prescriptions. For instance, Jarada et al. in [139] proposed
a VAE-based approach, called similarity network fusion-
collective VAE (SNF-CVAE), for predicting drug-disease in-
teractions, as shown in Fig. 12. Specifically, SNF-CVAE
integrated similarity measures, similarity selection, SNF, and
CVAE to conduct a non-linear analysis and improve the drug-
disease interaction prediction accuracy. Additionally, to further
demonstrate the reliability and robustness of SNF-CVAE, the
authors conducted two case studies on the top predicted drug
candidates for potentially treating Alzheimer’s disease and Ju-
venile rheumatoid arthritis, which were successfully validated
against clinical trials and published studies. In addition, GAN
has also been applied in this field. Xu et al. in [140] introduced
a GAN-based method for predicting the short-term therapeutic
outcomes of anti-vascular endothelial growth factor (VEGF)
therapy in treating diabetic macular edema (DME). They em-
ployed the state-of-the-art GAN-style algorithm, pix2pixHD
[141], renowned for progressively synthesizing high-resolution
and realistic images. This approach was utilized to generate
post-therapeutic optical coherence tomography (OCT) images.
Their experimental results showcased that the established
pix2pixHD model effectively produced post-therapeutic OCT
images close to the ground truth, providing credible insights to
aid ophthalmologists in predicting and assessing the response
to anti-VEGF treatment.

The continuous advancement of GAI-driven HDT can offer
the potential for more diverse and accurate predictions and
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simulations of treatment outcomes. This capability facilitates
more versatile personalized prescriptions, ultimately optimiz-
ing treatment outcomes.

C. Personalized Rehabilitation

The GAI for HDT can be applied in the personalized
rehabilitation training. Based on the built patient’s VT, the
doctor or physical therapist can simulate different rehabilita-
tion training scenarios by controlling the VT’s target posture.
For example, if the patient needs balance training, the doctor
can adjust the VT’s posture to create a personalized unstable
state that requires balance subject to the patient’s profile. Then,
the patient, namely the PT, observes the VT’s movements and
attempts to mimic its posture to improve their balance. Then,

the IoT devices are used to collect the patient’s motion data,
and transmit to the VT for monitoring and evaluation. Then,
the VT serves as virtual “coach” providing real-time feedback
and guidance to help the patient posture correction and actively
progress through their rehabilitation training.

During this personalized rehabilitation training, machine
learning-based approaches are usually utilized to enhance
the monitoring and evaluation process in the VT, providing
objective and personalized insights. This method relies on
substantial high-quality data to obtain a robust and accurate
machine learning model. This data should encompass a diverse
range of exercises and rehabilitation contexts, as well as
holistic patient profiles. However, acquiring such data poses
significant obstacles, such as data availability and privacy
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concerns, especially in individual-level. To this end, GAI can
be used to generate synthetic data in the context of person-
alized rehabilitation training for enhancing the performance
of the virtual “coach” role of VT, as shown in Fig. 13.
For instance, Mennella et al. in [142] proposed a diffusion
model-based approach, pose-guided condition diffusion model,
to generate synthetic data that mimicked realistic-looking
human movements in a rehabilitation context. Specifically, the
data generation framework used the latent diffusion model in
combination with ControlNet [143], and was trained on a pre-
labeled dataset of 6 rehabilitation exercises. The total 22,352
synthetic images can accurately capture the spatial consistency
of human joint relationships for predefined exercise move-
ments. Additionally, for enhancing the machine learning-based
post-stroke rehabilitation assessment, Boukhennoufa et al. in
[144] proposed a GAN-based approach to generate synthetic
data for amplifying two post-stroke rehabilitation datasets.
Specifically, the proposed approach incorporated a Siamese
network and an additional discriminator to address original
GAN mode collapse issue. Experimental results showed that
the proposed approach could generate more diverse and re-
alistic data, and improving classification models’ accuracy in
post-stroke rehabilitation assessment.

These synthetic datasets can be tailored to target various
aspects of rehabilitation, including postural correction, joint
mobility, balance training, and functional movements. Addi-
tionally, it can also be customized according to patient profiles,
achieving personalized rehabilitation training. In summary,
these GAI-based data augmentation methods are significant
for HDT in rehabilitation training by enhancing the monitoring
and evaluation process.

V. FUTURE RESEARCH DIRECTIONS

The GAI-driven HDT in IoT-healthcare is revolutionizing
the healthcare industry, as surveyed above. This exciting
field is nascent, and therefore, some critical issues remain
unexplored and are of great importance.

A. Deriving Energy-Efficient Scheme for GAI-driven HDT

Implementing such a large model, GAI-driven HDT, re-
quires substantial requirements in computation, communica-
tion, and storage resources due to the high parametric com-
plexity of GAI-driven HDT and the necessity for vast datasets.
For instance, 10,000 graphical processing unit (GPU) cards
were employed to run an HDT brain [145], [146]. It will
certainly result in large energy consumption, and generate sig-
nificant carbon dioxide emissions, jeopardizing sustainability.
Thus, the energy-efficient scheme for the implementation of
GAI-driven HDT is imperative. Techniques such as pruning,
knowledge distillation, quantization, and green learning, have
been proposed to address this issue. However, these solutions
come at the cost of sacrificing the accuracy of GAI-driven
HDT, which is a critical issue, especially in IoT-healthcare.
Therefore, it should carefully balance accuracy and sustain-
ability in energy-efficient GAI-driven HDT.

B. Designing Human-centric Evaluation Metrics

Human-centric metric design for evaluating the performance
of GAI-driven HDT in IoT-healthcare is inherently challeng-
ing. It should encompass the accuracy and reliability of the
GAI generated content compared to the PTs’ real health data.
This involves defining parameters to evaluate the fidelity of
the VTs’ behavior, responses, and predictive capabilities in
the context of the IoT-healthcare enabled by GAI. One of
potential solution is the integration of GAI evaluation metrics,
such as inception score and Frechet inception distance, and
healthcare knowledge. Based on these, the continual evaluation
and refinement of the GAI-driven HDT can ultimately enhance
the performance in IoT-healthcare.

C. Accelerating Real-time Responsiveness of GAI-driven HDT

The slow generation process of GAI models poses sig-
nificant challenges for developing GAI-driven HDT in IoT-
healthcare. This delay hampers real-time applications, such as
immersive interactions with VTs, and limits the responsiveness
necessary for instant healthcare interventions, such as timely
diagnostics or immediate treatment recommendations in criti-
cal conditions. Thus, accelerating real-time responsiveness of
GAI-driven HDT is imperative to ensure timely and effective
healthcare outcomes. One potential solution is refining and
optimizing GAI algorithms to expedite the generation process.
Advanced parallel computing techniques, such as leverag-
ing high-performance computing or distributed computing
frameworks, can significantly accelerate model training and
generation, mitigating the latency and enhancing agility in
responding to critical healthcare needs.

VI. CONCLUSIONS

In this survey, we have shed light on implementing GAI-
driven HDT in IoT-healthcare. Specifically, we have intro-
duced IoT-healthcare, and envisioned the potential of utilizing
GAI-driven HDT. Then, we have reviewed the fundamentals
of HDT and GAI and illustrated the framework of GAI-driven
HDT. Furthermore, we have delved into the implementation
of GAI-driven HDT, including GAI enabled data acquisition,
communication, data management, digital modeling, and data
analysis. Based on this, we presented the IoT-healthcare ap-
plications of GAI-driven HDT, including personalized health
monitoring and diagnosis, personalized prescription, and per-
sonalized rehabilitation. Finally, we have outlined some future
research directions.
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