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Abstract—Ensuring reliable update and evolution of a virtual
twin in human digital twin (HDT) systems depends on any
connectivity scheme implemented between such a virtual twin
and its physical counterpart. The adopted connectivity scheme
must consider HDT-specific requirements including privacy, se-
curity, accuracy and the overall connectivity cost. This paper
presents a new, secure, privacy-preserving and efficient human-
to-virtual twin connectivity scheme for HDT by integrating
three key techniques: differential privacy, federated multi-task
learning and blockchain. Specifically, we adopt federated multi-
task learning, a personalized learning method capable of pro-
viding higher accuracy, to capture the impact of heterogeneous
environments. Next, we propose a new validation process based
on the quality of trained models during the federated multi-task
learning process to guarantee accurate and authorized model
evolution in the virtual environment. The proposed framework
accelerates the learning process without sacrificing accuracy,
privacy and communication costs which, we believe, are non-
negotiable requirements of HDT networks. Finally, we compare
the proposed connectivity scheme with related solutions and show
that the proposed scheme can enhance security, privacy and
accuracy while reducing the overall connectivity cost.

Index Terms—Blockchain, digital twin, federated multi-task
learning, privacy, virtual twin.

I. INTRODUCTION

D IGITAL twin (DT) continues to attract wide attention,
especially in communications networks [1], healthcare

[2], [3], and manufacturing [4], [5] because of its ability to
improve the current systems by leveraging newly emerged
algorithms including machine learning, optimization and ar-
tificial intelligence as well as communication technologies,
such as edge intelligence, security and privacy-preservation
[6]–[8]. When adopted, DT is capable of allowing a digital
representation of real-world equipment, process, objects or
environment by creating corresponding virtual twins (VTs) in
the virtual space [9]. Specifically, in human-centric systems
such as medical cyber-physical systems, the human digital
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twin (HDT) facilitates the co-evolution of both humans and
VTs [2], and thus can transform the current healthcare systems,
environmental monitoring systems, and other applications by
integrating human behaviour and activities.

Generally, an HDT encompasses any human being, oth-
erwise called a physical twin (PT), located in the physical
environment, its digital replica, i.e., its corresponding VT
located in the virtual environment, and a mapping between
these two environments through reliable data links [2]. This
mapping is expected to ensure continuous and reliable in-
teractions between human-virtual twin pairs considering the
dynamic nature of the physical environment. While HDT can
significantly improve the quality of services and experiences
in the physical environment, the diverse requirements [1]–
[3], [9] in terms of latency, privacy, security, reliability, data
rate, and other user-defined performance metrics make it very
complicated and challenging to achieve a reliable mapping or
connectivity between physical and virtual environments [10].
Furthermore, there are currently insufficient possibilities for
the physical-virtual environment synchronizations to establish
closed loops, a lack of high-fidelity and quantification models
as well as difficulties in obtaining accurate predictions of com-
plex physical systems [4]. All these make HDT suffer in many
aspects in terms of accuracy, security, privacy, synchronization
and connectivity.

To address security and privacy issues, blockchain and
federated learning (FL) techniques have been widely adopted
in recent DT solutions [3], [11], [12] owing to their ability to
support the training of machine learning models in a decentral-
ized manner. However, the adoption of blockchain often relies
on high latency and energy-intensive consensus algorithms
[13], [14], which cannot meet the specific requirements of
HDT. In addition, although FL continues to receive wide
considerations when providing solutions to address privacy
concerns, privacy leakage has been reported to remain a
potential issue. For instance, when clients synchronize their
learned model parameters with the global server, an attacker
may infer some data properties or recover the raw data based
on this shared information [15], [16]. Moreover, conventional
FL suffers from many other challenges such as statistical
heterogeneity, high computation and communication costs, and
limited fault tolerance. Thus, an effective solution for HDT
integrating blockchain and FL has to be proposed, which can
accelerate the learning process without sacrificing accuracy,
privacy and communication costs.
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A. Contributions

Although connectivity problems in HDT [3], DT-
empowered 6G networks [11] and DT edge networks [12]
have earlier been studied, they may suffer from high latency
that characterizes traditional blockchain-enabled systems, as
well as data leakages and statistical heterogeneity issues
that characterize the conventional FL schemes. In addition,
synchronization accuracy is an important metric in HDT for
sufficient performance evaluations. However, such a metric
is difficult to obtain and has been neglected in previous
works. Moreover, the effects of scheduled offloading rates with
queueing constraints for a status update and privacy budget
on both the synchronization cost and the overall HDT system
performance have never been studied.

To address all these issues, in this paper, we proposed a new
HDT framework, which integrates differential privacy, feder-
ated multi-task learning (FML) [15] and quality training-based
validation process (a newly proposed lightweight blockchain-
enabled consensus method) in the presence of heterogeneous
environments. The proposed framework finds the balance be-
tween synchronization accuracy and connectivity cost without
compromising security and privacy which, we believe, are
non-negotiable requirements of HDT networks. To the best
of our knowledge, such a framework that captures statistical
heterogeneity, synchronization accuracy, synchronization cost
and other related performance has never been presented. The
contributions of this paper are thus summarized as follows:

• We propose a secure differentially private federated multi-
task learning (DPFML) framework for HDT by integrat-
ing the DPFML and a computational-efficient blockchain-
enabled validation process to provide a secure, privacy-
preserving and more accurate human-to-virtual twin con-
nectivity solution.

• We analytically study the connectivity cost of the pro-
posed DPFML-enabled connectivity scheme to investi-
gate the influence of some important system parameters,
including privacy budget, on synchronization cost as well
as the long-term average connectivity cost, overall time
cost and energy cost. To capture the validation cost
inherent in blockchain, we propose a new consensus
mechanism based on the quality of trained models during
FL, called proof of model quality (PoMQ).

• Following this, we formulate a connectivity problem in
the proposed DPFML-based framework as a Markov
decision process (MDP) to minimize the connectivity
cost. To solve the MDP, we propose a deep reinforcement
learning (DRL) algorithm using the deep deterministic-
policy gradient (DDPG) approach.

• Finally, we compare the proposed framework with exist-
ing frameworks through simulation and demonstrate the
ability of the proposed solution to offer synchronization
accuracy and reduced connectivity cost without compro-
mising security and privacy.

B. Organization

The remainder of this paper is structured as follows. Section
II reviews related works, while Section III introduces the

details of the proposed system model. In Section IV, we
present the analysis of the connectivity cost – time, privacy and
energy. The formulated MDP-based optimization problems
and DRL-based solutions are presented in Section V. Section
VI discusses the simulation results and the performance of the
proposed scheme, while Section VII concludes this paper.

II. RELATED WORK

In this section, we discuss some of the earlier presented
related frameworks and solutions. For clarity, we categorized
these existing works into three: the human digital twin, FL in
DT applications and differentially private solutions for FL.

A. Human digital twin
HDT is an emerging technology that is recently attract-

ing more consideration in many domains, including medical,
sports and manufacturing [17]. It relies on the concept of DT
to create a virtual replica of human, body organs or habits in
the virtual environment [2]. Note that DT provides enhanced
system performance by combining both system models and
analyses with real-time measurements for any individual sys-
tem. It facilitates model evolutions over the lifecycle of any
physical system while supporting the derivation of solutions
with the ability to aid real-time optimizations of such a
physical system.

Similar to DT, HDT possesses the potential to revolutionize
the practice of human system integration by adopting real-
time sensing and feedback to tightly couple measurements
of human performance, behaviour, as well as the influence
of environment throughout a product’s life cycle, on human
modelling to improve system design and performance [17].
Unlike the VT in the conventional DT, however, human VTs
often possess distinct underlying variability among each other
as well as dependence between humans and products in the
physical environment. Since each human VT (referred to as
VT henceforth for simplicity) evolves with data from its
counterpart PT, located in the physical environment, its design
and implementation are known to be very difficult.

A DT solution was presented in [18] for elderly healthcare
services, while [19] discussed a deep neural-based model for
capturing bi-directional context relationships when predicting
lung cancer. A software-based HDT was similarly presented
in [20] for tracking fitness-related measurements describing
an athlete’s behaviour on consecutive days, while the work
in [21] presented a cardio twin architecture for the detection
of ischemic heart disease. In [22], a DT ecosystem for health
and well-being was presented. It is worth mentioning that,
although the majority of [18]–[22] discussed the importance
of connectivity in HDT, none of these works delved into
investigating and modelling this connectivity scheme. In [3],
an edge-assisted connectivity framework for HDT was pre-
sented. While the presented framework is interesting, statisti-
cal heterogeneity, synchronization accuracy and other related
performance issues such as data leakages were not considered.
This paper addresses these limitations by proposing a connec-
tivity scheme that considered all important HDT-specific re-
quirements including statistical heterogeneity, synchronization
accuracy and data leakages.
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B. FL in DT applications

One of the underlying limitations of DT and HDT applica-
tions is privacy. Since every physical object must continuously
share its data with its corresponding VT, privacy becomes an
important concern. To address this, the work in [3] adopted
FL to preserve data privacy in HDT networks. Similarly, FL
was adopted in [10], [11] to learn a behavioural model from
user data towards achieving low latency in DT-empowered 6G
networks and in [12] to achieve efficient communication in
DT edge networks since offloading all running data to the
VT can incur a large amount of communication resource,
cost, and time while leading to privacy issues. In a similar
work, the authors in [23] carried out an optimization of
FL using the DRL method to construct the DT-empowered
industrial IoT model. The work proposed an asynchronous
FL scheme that is capable of addressing the discrete effects
caused by heterogeneous industrial IoT devices. A cooperative
FL was developed in [24] to facilitate DT construction in
resource-limited smart devices. An iterative double auction-
based joint cooperative FL with an update verification scheme
was designed.

In [25], an FL-based anomaly detection model was proposed
using DT by utilizing edge cloudlets when running anomaly
detection models locally, while the work in [26] presented a
blockchain-enabled adaptive asynchronous FL paradigm for
privacy-preserving and decentralized DT networks. However,
these works do not consider possible data leakages in conven-
tional FL algorithms which is important in HDT. Similarly,
connectivity problems were only studied in HDT [3], and DT-
enabled wireless networks [10]–[12], where the influence of
statistical heterogeneity and synchronization accuracy on the
connectivity cost was not considered. Sharing gradients as in
federated averaging can lead to data leakage. As a result,
cryptographic-based approaches have also been explored in
some FL-based research [27] although such approaches are
computationally inefficient in large-scale machine-learning
models. Recently, differential privacy (DP) is being explored
in FL to reduce the possibility of information leakages by
hiding the contribution of each client during training thereby
ensuring privacy guarantees.

C. DP solutions for FL

DP solutions are efficient techniques that can provide pri-
vacy guarantees in machine learning [28]. It is therefore
unsurprising that such approaches have recently been attracting
a lot of interest in FL-based research. By adding artificial noise
to the learned model parameters or datasets, DP can protect
nodes’ privacy with limited computation. It, however, tends to
reduce the overall accuracy as the privacy protection level in-
creases. Thus, a trade-off exists between accuracy and privacy.
In [16], a differentially private FL framework was adopted
to prevent privacy leakages during data sharing to model the
contribution, computation, communication, and privacy costs
of each participant. Also, security and privacy concerns in the
standard FL continue to hinder its wide adoption in urban
applications, hence a differentially private asynchronous FL

Table I
COMMON NOTATIONS USED

Notation Definition
Li Learning task of local aggregator or client i
M Total number of related local aggregators
V Total number of validators
Di; Di(t) Data size of client i; Data size of client i at time t

oi Status update offloading scheduling rate of client i
ϱi Service rate of client i
σ Gaussian noise variance
NR Number of communication rounds
GS Local gradient sensitivity
gt Gradient
η Learning rate
NE Number of local epochs
ϵ; δ Privacy budget; Additive term
θµ Weights parameter of the actor network
θO Weights parameter of the critic network
cr CPUs required to execute a sample of training data
ci CPU frequency of any local aggregator i
κi Coefficient dependency on the chip architecture
γ Discount factor
θoff Offloading threshold
θpvy Privacy cost threshold
θcmp Computation cost threshold

scheme was proposed in [29] for resource sharing in vehicular
networks by integrating DP and FL techniques.

While a differentially private FL framework can ensure
privacy guarantees when adopted, the inherent issues of statis-
tical heterogeneity are the main concern. Hence, any differen-
tially private FL-based framework can suffer from accuracy
degradation when used in a network with non-independent
and identically distributed (non-iid) data. To address these
issues associated with differentially private FL, especially in
HDT, where data from PTs are arbitrarily heterogeneous with
fundamental statistical heterogeneity issues, while also noting
the presence of many external conditions that can influence
the behaviour of each PT such as environment and genetic
information, we propose DPFML framework following the
privacy-aware multi-task learning approach, first discussed in
[15]. This ensures a federated optimization of heterogeneous
tasks while protecting the local model gradient information
using DP.

A DPFML-enhanced framework can enable federated op-
timization of heterogeneous client tasks while protecting the
local model gradient information through DP. Such a technique
can prevent privacy leakage, and ensure accuracy, privacy
and reduced communication costs when properly adopted.
Since in HDT networks, many external factors may influence
the performance of the entire system, while some unique
structures may exist among different people [30], it is desirable
to simultaneously achieve learning models for multiple re-
lated tasks through an efficient multi-task learning framework.
The proposed DPFML-enabled HDT connectivity solution
can learn customized context-aware policies from multiple
users and environments in a privacy-preserving manner. The
definitions of some common notations used throughout this
paper are summarized in Table I.
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Figure 1. Overview of the system model.

III. SYSTEM MODEL

We consider a DPFML-enabled HDT system, where the
physical and the virtual environments are connected through
a blockchain and FML-enabled connectivity scheme as shown
in Fig. 1. Data are generated by each PT (based on its
update scheduling rate), located in the physical environment, to
maintain a reasonable synchronization with its counterpart VT,
located in the virtual environment. The physical environment is
equipped with multiple local aggregators (LAs) corresponding
to different entities of the physical environment, such as
the typical PT, genetic information, environmental factors,
etc. Each LA is connected with various sensing devices for
data capturing and produces both shared and task-specific
parameters, from its locally trained model and based on its
local data. The shared parameter is then offloaded to the global
aggregator (GA) for aggregation following the standard FL
during the first phase. At the beginning of the second phase,
each LA will forward its locally trained task-specific model to
the validators, located in the virtual environment, to evaluate
its quality, before the VT model updating and evolution in the
final phase. The main components of the system model are
summarized as follows.

• Environment: The physical environment depicts the real-
world space, where every PT interacts with other entities
within its environment and maintains a dependent rela-
tionship with such related entities. A virtual replica of
each PT is maintained in the virtual environment.

• Local Aggregator: Also called client, each LA repre-
sents a distinct entity in the physical environment. Each
of these clients consists of several sensing devices to
regularly collect data from the physical environment. The
collected data by each LA are aggregated, subject to its
update scheduling rate oi, and are used to support learning
during the FML. In the proposed HDT framework, each
LA is responsible for updating the corresponding aspect
of its associated VT, using the task-specific models, after
the training quality requirements have been satisfied.

• Global aggregator: The GA is a central server that
facilitates aggregation of shared parameters during FML,
and also provides the training requirement thresholds
to validators during validation. At every communication
round, the global model (which contains the aggregated
shared parameters) is used to locally train each task-
specific model at each LA.

• Validators: Validators are essential components of the
blockchain system that ensures the reliability of every up-
date from each client before triggering the model evolu-
tion process in the virtual environment. Without this, the
system cannot guarantee accurate and authorized model
evolution of any corresponding VT. The blockchain also
keeps the records of previous model evolution activities
to ensure traceability. Since each LA is responsible for
updating its associated VT, it becomes imperative to have
an independent validation process.

• Model evolution: Model evolution is an essential process
in HDT. It involves the process of updating any typical
VT based on the current state of its counterpart PT
and relies on a timely, reliable, secure and privacy-
preserving PT-VT connectivity. At any time, the VT in
the proposed DPFML-enabled HDT system is updated in
the virtual environment using the task-specific parameters
received from its counterpart physical pair. Since this
model evolution process ensures that each VT is a true
replica of its paired PT, it is an important part of any
HDT framework and its construction is beyond the scope
of this current paper.

Assume that there are M LAs, each with a learning task
Li,∀i ∈ {1, 2, ...,M} as in Fig. 1. Each LA contains a training
dataset Di = ∪Di

j=1{(xi,j , yi,j)}, generated from different
sensing devices as in [3], where Di is the data size, xi,j is
the data of size j collected by client i and yi,j is the label
of xi,j . In practice, the general aim of the HDT framework is
to maintain the VT of each physical entity (e.g., body organ,
habit, eating pattern, etc.) in the virtual environment while
capturing the dependence of such a physical entity on other
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related components observed in the physical environment. As
a result, LAs in the HDT framework are related to each other
(e.g., a dependence exists between any PT, and its environment
and genetic information) such that locally trained models from
different LAs share some common underlying representation.
To capture this in the system modelling, the hard parameter
sharing technique [31] can be incorporated into the standard
FL to obtain FML. This hard parameter-sharing technique
has been earlier adopted in neural networks. With this, the
shared feature representation can be learned through joint
optimization of different tasks via the parameter sharing in
the proposed DPFML framework.

While model sharing among various LAs can reduce the
effect of insufficient data and improve the overall system
accuracy, it also comes with a risk of privacy leakages and
statistical heterogeneity. The adoption of the DP technique
ensures that privacy leakages are prevented through applica-
tions of Gaussian noises at each LAs. This, however, comes at
the expense of accuracy. Thus, we incorporate a double-layer
multi-task learning technique [15], where shared parameters
are used to improve the training performance at each LA, while
task-specific parameters are used to achieve personalization.

A. Federated multi-task learning model

To properly capture statistical heterogeneity, each LA learns
a domain classifier to capture transferable feature represen-
tations (i.e., shared parameters) across tasks through the
hard parameter-sharing technique. The transferable feature
representations are offloaded to the GA every communication
round for aggregation. After aggregation, the GA forwards the
global model to all related LAs. Each LA uses this global
model to improve the training of its task-specific models.
The aim is to reinforce each task by taking advantage of the
interconnections among related tasks while considering both
the inter-task relevance and the inter-task difference. Each LA
through its domain classifier classifies every feature as either a
sharable or task-specific feature by minimizing the distribution
difference [32] between its shared and global parameters. This
distribution difference can be obtained following the maximum
mean discrepancy [33] as

MMD(i, GA) =
∣∣∣∣∣∣ 1
ni

ni∑
k=1

Φ(xki )−
1

nGA

nGA∑
l=1

Φ(xlM+1)
∣∣∣∣∣∣2
H
,

(1)
where ni and nGA are the number of samples drawn from
any LA i and GA, respectively and Φ(.) is the nonlinear
mapping into reproducing kernel Hilbert space H. Also,
xki ,∀k = {1, ..., ni} and xlM+1,∀l = {1, ..., nGA} are the
feature vectors of LA i and GA, respectively, while ||.||
represents the norm. For each feature xki in Di, the chances
that xki is a sharable feature can be obtained through the
instance weight

Q(xki ) =
P (xki ∈ Dshared)

1− P (xki ∈ Dshared)
, (2)

where Dshared is a vector containing the sharable parameters. If
we assume a logistic regression-based domain classifier, then
the mapping Φ(i,GA) maps the global feature vector to the

local feature vector of LA i, while Φ(GA, i) maps the local
feature vector of LA i to the global feature vector, such that

min
Φ(i,GA)

{∣∣∣∣∣∣diag(Qi)
(
xki − xlM+1Φ(i,GA)

)∣∣∣∣∣∣2
F
+

λ

nGA∑
l=1

∣∣∣∣∣∣Φl(i,GA)
∣∣∣∣∣∣2
F

}
,

(3)

min
Φ(GA,i)

{∣∣∣∣∣∣xki − xlM+1Φ(GA, i)
∣∣∣∣∣∣2
F
+ λ

ni∑
k=1

∣∣∣∣∣∣Φk(GA, i)
∣∣∣∣∣∣2
F

}
,

(4)
where diag(.) transforms an input vector to a diagonal matrix,
||.||F is the Frobenius norm and λ > 0 is the regularization
parameter. At any round, features with less difference to
the global parameter are classified as shared parameters and
features with more difference are classified as task-specific
parameters. Let the top layers of the double-layer multi-task
learning framework, as presented in Fig. 2, capture the task-
specific features Tf , while the lower ones capture the shared
features Sf . Then, we can define Tf and Sf as

Tf = {ω1, ω2, ..., ωM},
Sf = {ωM+1,1, ωM+1,2, ..., ωM+1,M},

(5)

where ωi and ωM+1,i represent the task-specific parameters
and the shared parameters of any client i, respectively. As
shown in Fig. 2, the local optimization is carried out by each
client subject to its local objective function fi, given as

fi(ωi, ωM+1) =
1

Di

Di∑
j=1

ℓ(xi,j , yi,j , ωi, ωM+1), (6)

where ℓ is the loss function and ωM+1 is the global model.
During the optimization process, ωM+1 is shared among all
clients, while the GA carries out the aggregation of local
models at each communication round and then distributes it
back to all clients after updating the global model. With this,
each task aims to learn a function fi, while the global objective
is obtained as

f(ωM+1) =

M∑
i=1

Ωifi(ωM+1,i, ωM+1), (7)

where Ωi =
[

Di∑M
i=1 Di

]
captures the weight of the local model

for each LA i ∈ {1, 2, ...,M}.
Let all participants (i.e., LAs and the GA) be honest but

curious. As a result, it is possible that any participant may
maliciously attempt to infer some vital information when
interacting with other participants. To prevent such a potential
privacy violation scenario, randomized noises such as Gaus-
sian noise is introduced at the gradient level following the DP
approach. With that, the gradient contribution of each LAs
during communication and aggregation can be protected.

The proposed DPFML framework is summarized in Algo-
rithm 1, where each of the M LAs begins the FL process
when at least any LA i ∈ {1, 2, ...,M} has a status to update
following its update scheduling rate oi, subject to the approval
of the GA. As soon as the GA approves the commencement of
any status update, each related LA receives the global model
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Figure 2. The method of federated multi-task learning.

ωt
M+1 from the GA and updates its locally trained model

by computing the gradient for both shared and task-specific
layers. Note that the Gaussian noise nM+1,i ∼ N (0, σ2G2

S) is
only added to the shared models since only the lower layers are
shared to capture transferable feature representation. Thus, we
reduce the effect of noise on the overall accuracy of the model.
The convergence of Algorithm 1 is demonstrated through the
simulation presented in Section VI.

DPFML framework ensures privacy guarantees without sac-
rificing much of the trained model accuracy. Such a framework
aims to prevent any attacker or eavesdropper [34] from extract-
ing sensitive information during model exchanges among LAs
and the GA. It relies on a common standard method when
measuring privacy risk, called (ϵ, δ)−DP, where ϵ > 0 is the
privacy budget and δ ∈ (0, 1) is the additive term. Hence, the
possibility that ϵ− differential privacy is violated is captured
by probability δ. A lower ϵ suggests that the clients have a
lower risk of privacy leakage. With DPFML, each client adds
artificial Gaussian noise during local training at every round
such that (ϵ, δ)−DP of its local datasets is always guaranteed.
To ensure accuracy and convergence, the GA determines the
privacy budget ϵmin ≤ ϵ ≤ ϵmax. When ϵ < ϵmin, the added
noise is too large thus the training cannot converge. Similarly,
when ϵ > ϵmax, the added noise is too small and privacy
cannot be protected. The GA may also specify the training
data size Ni, and the corresponding reward Ri to facilitate
fairness during the validation process.

Note that any global model at each round includes aggre-
gated uploaded noisy local models. At every communication
round 0 ≤ t ≤ NR − 1, the global model is trained using
the local models received from all LAs to find a global model
parameter ωM+1 that minimizes global loss while ensuring
privacy guarantee. With this

argmin
ωM+1∈{ωt

M+1,∀t<NR}
f(ωM+1)

s.t. Pr(ωM+1,i ∈ Rd) ≤ exp(ϵ)Pr(ω′
M+1,i ∈ Rd) + δ,

(8)

where Pr(ωM+1,i ∈ Rd) ≤ Pr(ω′
M+1,i ∈ Rd) cap-

Algorithm 1 DPFML scheme.

INPUT: M clients, Gaussian noise variance σ, number of
rounds NR, local gradient sensitivity GS , number of local
epochs NE , learning rate η.
OUTPUT: Global model ωt+1

M+1, task-specific model ωi,∀i.
INITIALIZE: ωi, for all i ∈ {1, 2, ...,M}
For each round t = 0 to NR − 1 do

The GA broadcasts ωt
M+1to all LAs

For LA i ∈ {1, 2, ...,M} do
Synchronize local parameters ωt

M+1,i ← ωt
M+1

For local epoch LE = 0 to NE do
Compute gradients for shared layers as gtM+1,i

= ∂ωM+1
fi(ω

t)
Perturb gradients for shared layers as g̃tM+1,i =
gtM+1,i + nM+1,i,∀nM+1,i ∼ N (0, σ2G2

S)

Update parameters for shared layers as ωt+1
M+1,i

= ωt
M+1,i − η(g̃tM+1,i)

Compute gradients for task-specific layers as gti
= ∂ωi

fi(ω
t)

Update parameters for task-specific layers as
ωt+1
i = ωt

i − ηgti
End For

End For
Each LA offloads model weight ωt+1

M+1,i to the GA
The GA aggregates the received weights as
ωt+1
M+1 = 1

M

∑M
i=1 ω

t+1
M+1,i

End For
RETURN ωt+1

M+1, ωi, ∀i

tures the (ϵ, δ) − DP guarantees for ωM+1,i. The parameters
ωM+1,i, ω

′
M+1,i ∈ Rd are generally called the neighbouring

model parameters [28], such that the sensitivity function can
be defined as

∆f = max
ωM+1,i,ω′

M+1,i

∣∣∣∣∣∣f(ωM+1,i)− f(ω′
M+1,i)

∣∣∣∣∣∣. (9)

This ∆f depicts the maximum value by which any local model
function f changes if noise is added to ωM+1,i and it captures
the similarity between any neighbouring model parameters
ωM+1,i and ω′

M+1,i.

B. Blockchain-enabled validation model

HDT relies on accurate modelling of the VT to guarantee
performance. However, some LAs may attempt to manipulate
the system either by providing an untrained model or mis-
leading data for model updating in the virtual environment.
Similarly, a multidimensional information asymmetry [16]
may also exist among participants, where selfish participants
manipulate their costs to receive more rewards from the
system. To ensure that the final model from each LA is
accurate and has not been modified through malicious ac-
tivities, we propose a PoMQ consensus mechanism which
offers the validation process in terms of the quality of the
trained model during FML rather than solving computational-
inefficient hashing puzzles, as in the proof of work. With
the PoMQ, the validation process can be carried out before
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model updating and evolution in the virtual environment.
The PoMQ protocol is made up of V validators located
in the virtual environment. Multiple validators are necessary
to eliminate the possibility of malicious validation. These
validators are responsible for validating the training quality
of each model. After validation, each validator broadcasts its
validation decision to other validators to reach a consensus. A
virtual model is updated using any learned model only if the
majority of V consent.

The proposed PoMQ evaluates each learned model based
on computation cost, communication cost and privacy cost.
With this, validators can investigate whether the expenditure
by each LA corresponds to the expected costs. The VT is,
therefore, only updated when the consensus decision signifies
conformity to the requirements. More details on the analysis
of the validation process are provided in the next section.

IV. PERFORMANCE ANALYSIS

In this section, we first analyze the proposed framework
by investigating the physical-virtual environment connectivity
cost from time, privacy and energy perspectives. We then
obtain analysis for synchronization accuracy before presenting
the resulting optimization problem in Section V.

A. DPFML model

To ensure accurate VT model updating and evolution, data
captured from its environment and other individuals with
similar behaviour are also used through multi-task learning to
improve the performance while boosting the effective sample
size for each LA. At every round, each LA carries out local
training following (6) and subsequently performs shared and
task-specific features classification. The shared model is then
offloaded to the GA for aggregation. It is worth noting that the
cost of achieving a secure and privacy-preserving connectivity
scheme may undermine its benefits. Thus, we aim to min-
imize the synchronization cost while ensuring accuracy and
reliability. Compared to the local training time, the features
extractions time at each LA is negligible. Thus, we focus on
the local training time to estimate the required time, privacy
and energy cost when updating any typical VT.

Let cr and ci represent the number of CPUs required to train
one sample of training data and the CPU cycle frequency of
any LA i, respectively. The time cost for local model training
over NR rounds can be derived as

T cmp
LA = max

i∈[M ]

(
NR−1∑
t=0

crDi(t)

ci

)
, (10)

and the corresponding energy cost can be derived as

Ecmp
LA =

M∑
i=1

NR−1∑
t=0

κic0Di(t)c
2
i , (11)

where κi is the capacitance coefficient depending on the chip
architecture and c0 captures the number of floating operations
required to train or compute each sample for NE . Similarly,
for global aggregation, the total time and energy costs can be
respectively approximated as

T cmp
agg =

NR−1∑
t=0

(cagg∑M
i=1 |ωM+1,i(t)|
cGA

)
,

Ecmp
agg =

NR−1∑
t=0

κGAc0

( M∑
i=1

|ωM+1,i(t)|
)
c2GA,

(12)

where cagg is the number of CPUs required to aggregate one
unit of data and cGA is the CPU cycle frequency of the GA.

During each round, each LA perturbs its shared model
parameters through the DP technique. If we assumed Renyi DP
[16], then the injected noise σi to achieve (ϵ, δ)−DP guarantee
for each LA after NR-round training can be computed as

σi =
( 14αη2NENR

|LB |Di{ϵ− log
(
1
δ

)
/(α− 1)}

) 1
2

, (13)

where |LB | is the size of the local mini-batch and α =
([2 log(1/δ)]/ϵ) + 1 given that

α− 1 ≤
[2α2

i

3

]
log
( 1

α|LB |/Di(1 + δ2)

)
. (14)

From (13), it is clear that σi depends on ϵ, while ϵ
is inversely proportional to privacy protection. The strictest
privacy is achieved when ϵ = 0. Under this, it is impossible to
differentiate any two locally trained models. Let the privacy
cost be defined as the economical loss due to the potential
privacy leakage which can be formulated as

ψ =
1

ϵmax

M∑
i=1

NR−1∑
t=0

ϵivi|ωM+1,i(t)|, (15)

where vi represents this economical loss per unit shared model
from privacy leakage.

B. Communication and validation model

During FML, each LA offloads its shared model to the GA
at the end of every round for aggregation. The total offloading
time cost then can be calculated as

T off
LA =

NR−1∑
t=0

max
i∈[M ]

( |ωM+1,i(t)|
ri(t)

)
, (16)

where ri is the data rate between any LA i and the GA, and
can be obtained during round t as

ri(t) = B0 log2
(
1 +

hi,GA(t)Pi(t)

N

)
. (17)

The parameter N is the thermal noise signal power, B0 is
the bandwidth, Pi depicts the offloading power of any LA i
and hi,GA is the channel gain between any LA i and the GA.
From the GA to all LAs, the transmission time is assumed to
be negligible due to ample resources available in the GA [12].
Hence, the focus is only on offloading. Similarly, the total
energy cost during offloading of shared model parameters is
given as

Eoff
LA =

M∑
i=1

NR−1∑
t=0

ti(t)
N

hi,GA(t)Pi(t)

[
exp

(ri(t)
B0
−1
)]
, (18)

where ti is the time allocated to each LA.
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After NR-round training, any learned model fi(ωi) will
be further validated by the group of validators following the
PoMQ consensus protocol to determine whether the received
model satisfies the pre-defined requirements. Given that the
total communication cost, total training cost and total privacy
cost incurred during the training of such a learned model,
as received from the GA, are given as Coff

tot , Ccmp
tot and Cpvy

tot
respectively. Then each validator mj ∈ [V ] rates such a
learned model fi(ωi) as

Rmj
(i) =


1 if Coff

tot (i) ≥ θoff, C
cmp
tot (i) ≥ θcmp, and

Cpvy
tot (i) ≥ θpvy

0 otherwise,
(19)

where the thresholds of offloading, computation and privacy
costs are respectively given as θoff, θcmp and θpvy. A learned
model will be ultimately applied to the corresponding VT if

2

V∑
mj=1

Rmj (i) > V. (20)

To estimate the validation cost, we consider the transmission
of the final learned model to the virtual environment for the
validation, the computation process at each validator and the
decision exchange among validators after validation. The total
validation time cost of any model fi(ωi) is given as

Tval(i) =
|ωf,i|
ri

+ max
mj∈[V ]

{cv|Rmj
(i)|

cmi

+
|Rmj

(i)|
rv

}
, (21)

where |ωf,i| is the size of the final model fi(ωi) after NR

communication rounds, cv is the number of CPUs required
to validate one sample of the final learned model, cmi

is the
validation capacity, |Rmj

(i)| is the size of the decision mes-
sage and rv is the data rate among validators, assumed to be
constant owing to the pre-defined communication subchannels
among validators. Similarly, the energy cost can be obtained
as

Eval =
N

Pihi,val

[
exp

( ri
B0
− 1
)]

+

V∑
mj=1

{
N

Pjhj,k

[
exp

( rv
B0
− 1
)]

+ κvc0|Rmj
(i)|c2mi

}
.

(22)

C. Connectivity cost

Connectivity cost captures the cost of updating the VT
model every time an update is scheduled. It captures the cost
of maintaining secure and reliable synchronizations between
any PT and its counterpart VT. Since M LAs participate in a
model update, the connectivity cost includes the cost of FML
at each participating node, the validation cost, the privacy cost
as well as communication cost. Given any typical physical-
virtual twin pair, the overall time cost to complete a single
status update can be obtained as

Ctime =

NR−1∑
t=0

{(cagg∑M
i=1 |ωM+1,i(t)|
cGA

)
+

max
i∈[M ]

( |ωM+1,i|
ri

+
crDi(t)

ci

)}
+
( |ωf,i|

ri
+

(23)

max
mj∈[V ]

{cv|Rmj
(i)|

cmi

+
|Rmj

(i)|
rv

})
.

Similarly, the overall energy cost to ensure synchronization of
any single model update is obtained as

Cene =

NR−1∑
t=0

{
κGAc0

( M∑
i=1

|ωM+1,i(t)|c2GA

)
+

M∑
i=1

(
κic0Di(t)c

2
i + ti(t)

N

hi,GA(t)Pi(t)

[
exp

(ri(t)
B0
− 1
)])}

+
N

Pihi,val

[
exp

( ri
B0
− 1
)]

+

V∑
mj=1

{
N

Pjhj,k

[
exp

( rv
B0
− 1
)]

+ κvc0|Rmj (i)|c2mi

}
.

(24)
Generally, the connectivity cost depends on the scheduling rate
oi. Given that U is the number of status updates that have been
scheduled over a known time interval, its probability mass
function can be expressed as

P (U|oi) =
exp(−oi)oUi

U !
,∀U ∈ N. (25)

The long-term average connectivity cost per any arbitrary VT
model update can therefore be obtained as

Cconn = lim
U→∞

1

U

U∑
u=1

( 1

ϵmax

M∑
i=1

NR−1∑
t=0

ϵivi|ωu
M+1,i(t)|

+Cu
time + Cu

ene

)
.

(26)

Note that to update any arbitrary VT, the privacy, time and
energy costs should be considered. Hence, (26) is obtained by
averaging (15), (23) and (24) over U .

D. Synchronization accuracy

It is essential to investigate the synchronization accuracy.
Unfortunately, such a metric is very difficult to define since
it captures the degree of similarity between any PT and its
counterpart VT at any time. If we consider that any final model
after the validation process could capture the true correspond-
ing update in the physical environment, then we may evaluate
synchronization accuracy as a function of the synchronization
time [35] and the FML loss. That is, lower synchronization
time and FML loss depict higher synchronization accuracy. For
this purpose, we define a new term called synchronization gap,
which is the time since the last status update was generated in
the physical environment. With this, the synchronization gap,
at any known FML loss, is inversely proportional to accuracy.

To obtain the synchronization gap, we first consider each
generated status update u to intuitively pass through the FML
learning and validation process following the first-come-first-
serve (FCFS) approach. We further assume that this status
update generation is the same as the status update arrival while
the arrival and the service time (i.e., the time from arrival till
model evolution or updating) follow random processes. The
service time of any status depicts the time at which the VT is
successfully updated using such a status update. Define that the
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inter-arrival time of status updates X(u) from any tagged LA is
an independent and identically distributed (i.i.d.) exponential
random variable with E[X] = 1

oi
[36], [37]. Let ϖk represents

the times at which status is received at the tagged VT for its
update, then at any time t, the index and the timestamp of the
most recently received status are respectively given as

J (t) = max{k|ϖk ≤ t},
u(t) = ϖJ (t).

(27)

The synchronization gap at time t can then be expressed as

Sgap(t) = t− u(t),∀t ≥ 0. (28)

In the absence of newly received model updates, the synchro-
nization gap increases linearly with time and is reduced to a
smaller value when a new model update is received. For any
update u, the processing time of any generated status update
can be obtained as

P
(u)
time =W

(u)
time + C

(u)
time, (29)

where W
(u)
time is the waiting time for any status update u

and C
(u)
time is the service time of u following (23). Obvi-

ously, W (u)
time = 0 if any status update u is generated when

the VT is already updated with previously generated status
u − 1. However, if u is generated when u − 1 is still in
the system (i.e., u − 1 has not triggered an update of the
VT), W (u)

time = (P
(u−1)
time −X(u))

+ captures the average waiting
time. For explanation purpose, we assumed that oi follows the
Poisson point process, while the service times of the rate ϱi
are similarly i.i.d. exponentials with average C

(u)
time, then the

average synchronization gap is provided in Proposition 1.
Proposition 1: The average synchronization gap when the
status arrival rate is Poisson while the service times are i.i.d.
exponentials can be calculated as

Sfc
gap = C

(u)
time

{oiC(u)
time(1− oiC

(u)
time) + (1− oiC(u)

time)

oiC
(u)
time(1− oiC

(u)
time)

(oiC
(u)
time)

3

oiC
(u)
time(1− oiC

(u)
time)

}
.

(30)

Proof: The proof follows from the probability density function
of the system with Poisson process arrival rate and exponential
service times given as

Dfc(t) = ϱi

(
1− oi

ϱi

)
exp

(
− ϱi

[
1− oi

ϱi

]
t
)
. ■ (31)

Note that (30) follows from a single-server FCFS queue with
infinite buffer size. Such a scheme, though simple, may not
be suitable in the HDT system, where any VT is expected
to reflect the latest status of its counterpart PT. Instead
of processing an old status, we can discard it and simply
process the latest status. Following this and to obtain a low
synchronization gap, we introduced a non-preemptive single-
server last-come-first-serve (LCFS) queue with a buffer of size
2 and queue displacement policy, where the system at any time
can only consist of a maximum of two status updates – one
currently under processing and the other on the queue. On
the arrival of another status update, the newly arrived status
displaces the status waiting in the queue as shown in Fig. 3.

Empty

Waiting on 

the queue
In service

 a arrives

 b arrives

 c arrives

 a departs

a

b a

c a

c

Empty

Waiting on 

the queue
In service

 a arrives

 b arrives

 c arrives

 a departs

a

b a

c a

c

Figure 3. A 2 buffer size non-preemptive single-server LCFS queue with
queue displacement policy.

Let the arrival and service follow Poisson and general
distributions, respectively. We applied the classical embedding
technique under the assumption that the queue system is
stationary and sampled at certain epochs, such that service
completion (i.e., the successful updates of a VT) has a
Markovian property. With that, the synchronization gap can
have the same distribution for all t while the distribution of
any C(u)

time of rate ϱi is given as g with

g(x) = P(C(u)
time ≤ x). (32)

Proposition 2: If Ctime is i.i.d. exponential in steady-state, the
density of Sgap at any time t can be obtained under a non-
preemptive single-server LCFS queue system with buffer size
2 and queue displacement as

Dlcfs
Sgap

(t) =
oi[(ρ+ 2)(ρ− 1)]t− ρ2 + ρ+ 3

ρ3 − 1
exp(−ϱit)

+
oi(ρ+ 1)t+ ρ(ρ+ 3) + 3

ρ(ρ+ 1) + 1
exp(−ϱi[ρ+ 1]t)

− ρ

ρ− 1
exp(−oit),

(33)
where ρ = oi

ϱi
depicts the traffic intensity.

Proof: The proof can be obtained by inverting the Laplace
transform of Sgap(t) at any time t = 0, given as [38], [39]

E[e−sSgap(0)] =
ϱi

ϱi + s

(2ϱioi + ϱ2i + o2i + ϱis

(ϱi + oi)(oi + ϱi + s)

)
{( oi

s+ oi

)( ϱ2i
o2i + oiϱi + ϱ2i

)( oi + ϱi
ϱi + oi + s

)
+
( ϱi
ϱi + s

)
o2i + ϱioi

o2i + ϱioi + ϱ2i

}
,

(34)
where for oi = ϱi = 1,

Dlcfs
Sgap

(t) =
1

3
[(2t+ 7) exp(−2t) + (6t− 7) exp(−t)], (35)

and limoi→∞Dlcfs
Sgap

(t) = t exp(−t). The synchronization gap
in such a case can be expressed as

Slcfs
gap =

o4i (2oi + 7ϱi) + o2i ϱ
2
i (8oi + 7ϱi) + ϱ4i (4oi + ϱi)

oiϱi(oi + ϱi)2(o2i + ϱioi + ϱ2i )
.

(36)
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V. PROBLEM FORMULATION AND OPTIMIZATION

Asides from the synchronization gap, it is also important
to reduce the occurrence of loss during the FML. This is
expected to improve the synchronization accuracy at any time
by simultaneously minimizing the two functions following

min
oi,V,M

(
w1Sgap +

w2

Di

Di∑
j=1

ℓ(xi,j , yi,j , ωi, ωM+1)
)
, (37)

s.t. oi ∈ [0, 1], (37a)
w1 + w2 = 1,∀w2 ≫ w1, (37b)∑

i∈[M ]

i ≤M, (37c)

V∑
j

mj ≤ V. (37d)

The parameters ω1 and ω2 are weight factors that ensure an ef-
fective combination of the synchronization time and the FML
loss. The constraint in (37a) ensures the values for oi while
(37b) ensures that the two weights sum up to 1. In addition,
(37c) and (37d) ensure that the total number of participating
LAs and validators do not exceed M and V , respectively. A
simultaneous minimization of the synchronization gap and loss
in (37) is not straightforward since the synchronization gap
depends on not only the overall time cost, but also the FML.
We can thus leverage the overall time cost to further reduce
the synchronization gap in (36).

From (37), we know that an increase in the number of
rounds NR can improve the training accuracy at the expense of
connectivity cost, while an increase in the privacy protection
level (i.e., a lower ϵ) improves privacy, but decreases the
accuracy. Moreover, if we increase the computation overhead
(by increasing the added noise), we can have higher privacy
but lower connectivity cost. That means a trade-off exists
between accuracy and connectivity cost, accuracy and privacy,
and connectivity cost and privacy. In this section, we attempt
to minimize the connectivity cost of the proposed DPFML-
enabled HDT framework without compromising accuracy and
privacy.

A. Problem formulation
We aim to find the balance between synchronization accu-

racy, privacy cost and connectivity cost. The objective function
can be formulated as

O = Θ1(Ctime+Cene+fi(ωi, ωM+1))−(1−Θ1)Θ2ψcost, (38)

where Θ1 (0 < Θ1 < 1) represents the weight factor necessary
to combine two objective functions and Θ2 captures the
mapping factor to ensure that the two objectives functions are
at the same scale. Note that to maximize the synchronization
accuracy, we simply minimize the FML loss in (38), and take
(36) as a baseline synchronization gap which can be further
reduced through the time cost Ctime. That is, given (36), the
gap can be further reduced by minimizing Ctime. Thus, the
optimization problem is obtained as

min
oi,V,M,ϵ,NR

[Θ1(Ctime + Cene + fi(ωi, ωM+1))−

(1−Θ1)Θ2ψcost],
(39)

s.t. oi ∈ [0, 1], (39a)∑
i∈[M ]

i ≤M, (39b)

V∑
j

mj ≤ V, (39c)

ϵmin ≤ ϵ ≤ ϵmax, (39d)

cmin
i ≤ ci ≤ cmax

i ,∀i ∈ [M ], (39e)

cmin
mj
≤ cmj

≤ cmax
mj

,∀mj ∈ [V ], (39f)

where cmin
i and cmax

i represent the minimum and maximum
computation capacity of each LA respectively, while cmin

mj
and

cmax
mj

are the minimum and maximum validation capacities of
each validator respectively. The constraint (39d) ensures that
the privacy budget is within the acceptable range while (39e)
ensures that the CPU frequency of any LA i is within the
acceptable range. Similarly, (39f) ensures that the validation
capacity of any validator mj is also within the acceptable
range. Obviously, problem (39) is a nonconvex optimization
problem and thus its solution is difficult to obtain in close
form. In what follows, we transform the original problem
into an MDP problem and provide solutions using the DRL
algorithm.

B. MDP problem and solution

We defined the tuple (S(t),A(t),R(t)), where S(t), A(t) and
R(t) are the state space, action space and reward, respectively,
at each round t. In the proposed framework, the agent is
the typical LA that aims to update its counterpart VT by
collaborating with related LAs during the FML. Thus, the
state space includes the achievable data rate r, the computation
capacity c, the validation capacity cm, the learned parameter
ω(t) and the global loss value function f(ωM+1). The state
space is given as

S(t) = {r(t), c(t), cm(t), f(ωM+1(t))}. (40)

Similarly, the action space includes the scheduling rate o, the
number of validators V , the number of LAs M , the privacy
budget ϵ and the number of rounds NR. The action space is
given as

A(t) = {o(t), V (t),M(t), ϵ(t), NR(t)}, (41)

while the reward function is obtained from (38) as

R(t) = −O(t), (42)

if all constraints in (39) are satisfied and zero if otherwise.
Given that γ ∈ [0, 1] is the discount factor, each agent aims
to maximize the cumulative reward

E
[NR−1∑

t=0

γR(S(t),A(t))
]
. (43)

C. DRL solution using DDPG

To solve the MDP problem, we adopted the DDPG al-
gorithm [40] owing to its ability to achieve improved per-
formance, for continuous action space, compared to other
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Figure 4. Structure of the DDPG.

algorithms. While Q-learning algorithms and their variants are
suitable for low-dimensional, discrete state and action spaces,
most of these algorithms do not easily converge to optimal
behaviour. In addition, such models are susceptible to the
curse of dimensionality when too many decision variables
are involved [41]. The Deep Q network algorithm can handle
problems in high-dimensional continuous state space, albeit
under a discrete action space. DDPG algorithm generally relies
on deep neural networks to create two approximation functions
of the actor-critic algorithm. The actor network is described as
a policy function µ(S|θµ) with parameter θµ while the critic
network is described as an action-value function O(S,A|θO)
with parameter θO.

Define the Bellman equation as

Oµ(S(t),A(t)) = E[R(t) + γOµ(S(t+1), µ(S(t+1)))], (44)

where the loss of O(S,A|θO) can be obtained, if µ′ represents
the target actor network, as

L(θO) = Eµ′ [(Oµ(S(t),A(t)|θO)− {R(t)+

γO(S(t+1), µ(S(t+1))|θO)})2].
(45)

To update the policy function µ(S|θµ), the chain rule is
applied to the Bellman equation from the start distribution
J [40] based on the actor parameters

▽θµJ ≈ Eµ′ [▽θµO(S,A|θO)|S=S(t), A=µ(S(t)|θµ)]

= Eµ′ [▽AO(S,A|θO)|S=S(t), A=µ(S(t)) ▽θµ µ(S|θµ)|S=S(t) ].
(46)

To minimize loss, the parameter ▽θOL is estimated using the
algorithmic differentiation technique [42], such that the action-
value function O(S,A|θO) parameters are updated using the
gradient descent as

θO ← θO − ηcritic
rate ▽θOL, (47)

given that ηcritic
rate is the learning rate of the critic network.

In addition, the algorithmic differentiation technique is also

adopted to obtain gradients ▽AO(S,A|θO)|S=S(t), A=µ(S(t))

and ▽θµµ(S|θµ)|S=S(t) , such that

▽θµJ ≈
1

Nbatch

∑
j

[▽AO(S,A|θO)|S=S(t), A=µ(S(t))

▽θµµ(S|θµ)|S=S(t) ],

(48)

where Nbatch is the mini-batch size selected by the agent during
the learning process. Similarly,

θµ ← θµ − ηactor
rate ▽θOJ , (49)

where ηactor
rate is the learning rate of the actor network. With

these, the target critic and actor networks can be respectively
obtained using the update rate τ rate ≪ 1 as

θO
′
← τ rateθO + (1− τ rate)θO

′
,

θµ
′
← τ rateθµ + (1− τ rate)θµ

′
.

(50)

This work used multiple DDPG agents to simulate the pro-
posed framework. Its general structure is shown in Fig. 4,
where D1, D2, A1, S1, S2 and C1 capture the hidden layers
of such a framework. The details of the simulation and results
are provided in the Section VI.

VI. NUMERICAL RESULTS

We first implemented the proposed DPFML framework by
adopting TensorFlow and LEAF library [43] – an open-source
library that provides a modular benchmarking framework for
federated settings with applications including federated learn-
ing, multi-task learning, meta-learning, and on-device learning.
Since HDT data are expected to be non-iid, we used the
CelebA datasets available in the LEAF library. To minimize
the required connectivity cost in the proposed framework, we
incorporated the DDPG algorithm into the DPFML frame-
work. We compared the proposed framework with three other
baseline frameworks: the conventional federated averaging
(FeDAvg), the FeDAvg with DP (DPFedAvg) and the DPFML
with standard validation method (vDPFML). The vDPFML is
simply an implementation of the proposed framework with
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Table II
PARAMETERS USED FOR SIMULATION

Parameter Value
M , V [1, 22]

Di [1, 5] MB
cr , cv 1 GHz
ci [2, 3.5] GHz
NR [10, 50]

κi, κGA; κv 10−27

cagg 1 GHz
cGA 20 GHz
vi [0.01, 0.012, 0.014, 0.016]

ϵmax 50

B0 1 MHz
|Rmj | 10 MB
cmi [5, 12.5] GHz
rv 2

ηcritic
rate 0.001

ηactor
rate 0.0005

Nbatch 10

γ 0.99

τ rate 0.05

a standard blockchain consensus algorithm instead of the
proposed PoMQ consensus mechanism.

We carried out several experiments and simulations to
demonstrate the performance of the proposed framework. In
the simulations, we used a computer system with 10 CPU
cores. The CPU is Intel(R) Core(TM) i9 − 10900X with
3.70 GHz. Generally, to complete any arbitrary VT model
update, we carried out the local training, local parameters syn-
chronization and communication rounds in the regions [0, NE ],
[1,M ] and [1, NR], respectively. Therefore, the complexity of
Algorithm 1 is around O(NEMNR). Except otherwise stated,
the parameters used for simulations are presented in Table II.
These parameters were selected based on similar works [3],
[11], [12]. We set the sizes of the hidden layers in Fig. 4 as
follows: D1 = 128, D2 = 32, S1 = 64, S2 = 32, A1 = 32,
and C1 = 16.

In Fig. 5, we demonstrate the ability of the proposed
DPFML scheme to reach convergence faster than other
schemes. The highest loss is observed in the DPFedAvg
scheme due to the incorporation of the privacy budget (as in
the proposed DPFML and vDPFML schemes), through the
addition of the Gaussian noise. The DPFML scheme achieved
the least loss as NR increases which justifies the suitability
of the proposed scheme to perform efficiently in the presence
of non-iid data. Although the FeDAvg has been demonstrated
to perform well when iid datasets are used, we claim that
data is HDT systems are expected to be non-iid. Thus, such a
framework may not be suitable.

A similar result is observed in Fig. 6, where the loss is
obtained as ϵ increases. At a lower ϵ, the loss is higher
since a large amount of noise is added. As ϵ increases, the
loss is observed to reduce although remains constant for
DPFeDAVg as ϵ increases beyond 35. In addition, the standard
FeDAvg remains fixed since privacy is not considered, thus the
privacy budget was set to the maximum under such a case,
i.e., ϵ = ϵmax, while the DPFML scheme showed improved
performance compared to the other schemes. The proposed
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Figure 5. Performance in terms of the learning loss with respect to NR.
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Figure 6. Performance in terms of the learning loss with respect to ϵ.

scheme ensures better performance without compromising
privacy.

Next, we investigate the performance of the DPFML frame-
work using accuracy as a metric. While the accuracy in
FeDAvg increases with NR as shown in Fig. 7, the DPFedAvg
continues to produce an accuracy closer to zero even as NR

increases. Conversely, the DPFML achieved the best accuracy
within the first 100 rounds and remain almost constant after-
wards. This confirms the ability of the DPFML framework to
reach convergence with a limited number of communication
rounds. Likewise, the proposed DPFML scheme produces an
improved performance compared to the FeDAvg as ϵ increases.
This is depicted in Fig. 8. Although the standard FeDAvg
produced a better accuracy when ϵ is closer to zero, this
is unsurprising since such an approach provides no privacy.
With DPFeDAvg, the accuracy was observed to be very low.
This further confirms that FeDAvg is unsuitable for HDT
frameworks where privacy is an important constraint since
such an approach underestimates privacy.

To compare the performance in terms of the average connec-
tivity cost, we investigate the long-term average connectivity
cost (U = 100) as a function of ci. As presented in Fig.
9, the long-term average connectivity cost decreases as ci
increases in all cases since an improved computation capacity
can reduce latency significantly thereby reducing the time cost.
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Figure 7. Performance in terms of the learning accuracy with respect to NR.
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Figure 8. Performance in terms of the learning accuracy with respect to ϵ.
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Figure 9. Performance in terms of the average connectivity cost.

However, the DPFML scheme requires the lowest cost while
the FeDAvG and DPFeDAvg require more cost to ensure the
timely synchronization of any PT-VT pair. A similar result
is obtained when long-term average connectivity cost was
investigated as cmi

increases in Fig. 10, confirming that the
standard validation process in blockchain may not be suitable
in HDT systems because they require more time and energy to
validate every transaction. In Fig. 11, we also confirmed that
the connectivity cost indeed increases with ϵ. Interestingly, the
cost is highest when no privacy or less privacy constraint is
implemented reflecting the level of potential threats.
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Figure 10. Impact of validation capacity on the average connectivity cost.
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Figure 11. Impact of privacy budget.

We note that the time cost in the DPFeDAvg is slightly
higher than the conventional FeDAvg since the introduction of
noise means more communication round is required to reach
convergence than in its standard version. As shown in Fig.
12, the time cost increases with the V since more cost is
incurred to reach consensus as V increases. With a minimum
time cost for the DPFML, the synchronization gap is further
reduced between any PT-VT pair. Interestingly, the energy
cost increases in Fig. 13 as ci increases since the agents have
learnt the optimal parameters to ensure reduced cost and an
increase in capacity can only increase the energy cost but
cannot improve significantly the overall performance.

VII. CONCLUSION

HDT is a new technology that can transform many aspects
of our current environment. To realize any HDT system, there
must be reliable connectivity between any PT-VT pair to
ensure timely synchronization between them. In this paper, we
investigate the connectivity problem in the HDT framework
and proposed the DPFML technique to achieve connectivity
between any PT-VT pair. This is necessary since connectivity
costs must be reduced to ensure timely synchronization with-
out compromising privacy. To further reduce cost, we proposed
a new consensus protocol, called the PoMQ, and formulated
the connectivity problem as an MDP problem to allow op-
timization through the DDPG algorithm. We compared the
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Figure 12. Performance in terms of the time cost.
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Figure 13. Performance in terms of the energy cost.

proposed solution with the existing ones and conclude that the
proposed scheme is suitable for HDT systems where datasets
are expected to be non-iid while privacy and security are also
essential parameters.

REFERENCES

[1] L. U. Khan, W. Saad, D. Niyato, Z. Han, and C. S. Hong, “Digital-twin-
enabled 6G: Vision, architectural trends, and future directions,” IEEE
Communications Magazine, vol. 60, no. 1, pp. 74–80, Feb. 2022.

[2] S. D. Okegbile, J. Cai, C. Yi, and D. Niyato, “Human Digital Twin
for Personalized Healthcare: Vision, Architecture and Future Directions,”
IEEE Network, July 2022., DOI: 10.1109/MNET.118.2200071.

[3] S. D. Okegbile, and J. Cai, “Edge-assisted human-to-virtual twin con-
nectivity scheme for human digital twin frameworks,” in IEEE VTC
Conference, Helsinki, Jun. 2022, pp. 1–6.

[4] B. Schleich, N. Anwer, L. Mathieu, and S. Wartzack, “Shaping the digital
twin for design and production engineering,” CIRP annals, vol. 66, no.
1, pp. 141–144, Jan. 2017.

[5] X. Zhou, X. Xu, W. Liang, Z. Zeng, S. Shimizu, L. T. Yang, and Q. Jin,
“Intelligent small object detection for digital twin in smart manufacturing
with industrial cyber-physical systems,” IEEE Transactions on Industrial
Informatics, vol. 18, no. 2, pp. 1377–1386, Feb. 2021.

[6] J. Chen, C. Yi, S. D. Okegbile, J. Cai and X. S. Shen, “Networking
Architecture and Key Supporting Technologies for Human Digital Twin in
Personalized Healthcare: A Comprehensive Survey,” arXiv: 2301.03930,
Jan. 2023.

[7] H. Xiang, K. Wu, J. Chen, C. Yi, J. Cai, D. Niyato and X. S. Shen, “Edge
Computing Empowered Tactile Internet for Human Digital Twin: Visions
and Case Study,” arXiv:2304.07454, Apr. 2023.

[8] J. Chen, C. Yi, H. Du, D. Niyato, J. Kang, J. Cai and X. S. Shen, “A
Revolution of Personalized Healthcare: Enabling Human Digital Twin
with Mobile AIGC,” arXiv:2307.12115, Jul. 2023.

[9] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,” IEEE
Internet of Things Journal, vol. 8, no. 18, pp. 13789–13804, May 2021.

[10] Y. Lu, S. Maharjan, and Y. Zhang, “Adaptive edge association for
wireless digital twin networks in 6G,” IEEE Internet of Things Journal,
vol. 8, no. 22, pp. 16219–16230, Jul. 2021.

[11] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Low-latency
federated learning and blockchain for edge association in digital twin
empowered 6G networks,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 7, pp. 5098–5107, Jul. 2021.

[12] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang,
“Communication-efficient federated learning and permissioned
blockchain for digital twin edge networks,” IEEE Internet Things
Journal, vol. 8, no. 4, pp. 2276–2288, Feb. 2021.

[13] S. D. Okegbile, J. Cai, and A. S. Alfa, “Performance analysis of
blockchain-enabled data sharing scheme in cloud-edge computing-based
IoT networks,” IEEE Internet of Things Journal, vol. 9, no. 21, pp. 21520–
21536, Nov. 2022.

[14] S. D. Okegbile, J. Cai, and A. S. Alfa, “Practical Byzantine fault
tolerance-enhanced blockchain-enabled data sharing system: Latency and
age of data package analysis,” IEEE Transactions on Mobile Computing,
Nov. 2022, DOI: 10.1109/TMC.2022.3223306.

[15] H. Wu, C. Chen, and L. Wang, “A theoretical perspective
on differentially private federated multi-task learning,” Nov. 2020,
arXiv:2011.07179.

[16] M. Wu, D. Ye, J. Ding, Y. Guo, R. Yu, and M. Pan, “Incentivizing
differentially private federated learning: A multidimensional contract
approach,” IEEE Internet of Things Journal, vol. 8, no. 13, pp. 10639–
10651, Jan. 2021.

[17] M. E. Miller, and E. Spatz, “A unified view of a human digital twin,”
Human-Intelligent Systems Integration, vol. 4, pp. 23–33, Mar. 2022,
DOI: https://doi.org/10.1007/s42454-022-00041-x.

[18] Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, R. Lui, Z. Pang,
and M. Deen, “A novel cloud-based framework for the elderly healthcare
services using digital twin,” IEEE Access, vol. 7, pp. 49088–49101, Apr.
2019.

[19] J. Zhang, L. Li, G. Lin, D. Fang, Y. Tai, and J. Huang, “Cyber resilience
in healthcare digital twin on lung cancer,” IEEE Access, vol. 8, pp.
20190011201913, Oct. 2020.

[20] B. R. Barricelli, E. Casiraghi, J. Gliozzo, A. Petrini, and S. Valtolina,
“Human digital twin for fitness management,” IEEE Access, vol. 8, pp.
26637–26664, Feb. 2020.

[21] R. Martinez-Velazquez, R. Gamez, and A. El Saddik, “Cardio Twin:
A Digital Twin of the human heart running on the edge,” in IEEE
International Symposium on Medical Measurements and Applications,
Istanbul, Jun. 2019, pp. 1–6.

[22] A. El Saddik, H. Badawi, R. Velazquez, F. Laamarti, R. Diaz, N. Bagaria,
and J. Arteaga-Falconi, “Dtwins: a digital twins ecosystem for health and
well-being,” IEEE COMSOC MMTC Commun. Front, vol. 14, pp. 39–43,
May 2019.

[23] W. Yang, W. Xiang, Y. Yang, and P. Cheng, “Optimizing Federated
Learning with Deep Reinforcement Learning for Digital Twin Empowered
Industrial IoT,” IEEE Transactions on Industrial Informatics, vol. 19, no.
2, pp. 1884–1893, Feb. 2023.

[24] L. Jiang, H. Zheng, H. Tian, S. Xie, and Y. Zhang, “Cooperative fed-
erated learning and model update verification in blockchain empowered
digital twin edge networks,” IEEE Internet of Things Journal, vol. 9, no.
13, pp. 11154–11167, Jul. 2022.

[25] D. Gupta, O. Kayode, S. Bhatt, M. Gupta, and A. S. Tosun, “Hierarchical
federated learning based anomaly detection using digital twins for smart
healthcare,” in IEEE International Conference on Collaboration and
Internet Computing, Atlanta, Dec. 2021, pp. 16–25.

[26] Y. Qu, L. Gao, Y. Xiang, S. Shen, and S. Yu, “FedTwin: Blockchain-
Enabled Adaptive Asynchronous Federated Learning for Digital Twin
Networks,” IEEE Network, vol. 36, no. 6, pp. 183–190, Jul. 2022.

[27] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp.50–60, May 2020.

[28] A. El Ouadrhiri, and A. Abdelhadi, “Differential privacy for deep and
federated learning: A survey,” IEEE Access, vol. 10, pp. 22359–22380,
Feb. 2022.

[29] Y. Lu, X Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Differentially
private asynchronous federated learning for mobile edge computing in
urban informatics,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 3, pp. 2134–2143, Sept. 2019.

[30] V. Smith, C. K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Advances in neural information processing sys-
tems, Long Beach, CA, USA, vol. 30, 2017, pp. 1–11.



15

[31] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1 pp.
41–75, Jul. 1997.

[32] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q.
He, “A comprehensive survey on transfer learning,” in Proceedings of the
IEEE, vol. 109, no. 1, pp. 43–76, Jul. 2020.

[33] K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schölkopf,
and A. J. Smola, “Integrating structured biological data by kernel maxi-
mum mean discrepancy,” Bioinformatics, vol. 22, no. 14, pp. 49–57, Jul.
2006.

[34] S. D. Okegbile, and O. I. Ogunranti, “Users emulation attack manage-
ment in the massive internet of things enabled environment,” ICT Express,
vol. 6, no. 4, pp. 353-356, Dec. 2020.

[35] J. C. Eidson, and K. B. Stanton, “Timing in cyber-physical systems: The
last inch problem,” in IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control, and Communication, Beijing,
Oct. 2015, pp. 19–24.

[36] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?,” in IEEE Proceedings IEEE INFOCOM, Mar. 2012, pp.
2731–2735.

[37] S.D. Okegbile, and B. T. Maharaj, “Age of information and success
probability analysis in hybrid spectrum access-based massive cognitive
radio networks,” Applied Sciences, vol. 11, no. 4, pp. 1940, Feb. 2021.

[38] G. Kesidis, T. Konstantopoulos, and M. A. Zazanis, “Age of information
using Markov-renewal methods,” Queueing Systems, pp. 1-36, Aug. 2022.

[39] Y. Inoue, H. Masuyama, T. Takine, and T. Tanaka, “A general formula
for the stationary distribution of the age of information and its application
to single-server queues,” IEEE Transactions on Information Theory, vol.
65, no. 12, pp. 8305–8324, Aug. 2019.

[40] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
Sept. 2015, arXiv:1509.02971.

[41] Y. Liang, C. Guo, Z. Ding, and H. Hua, “Agent-based modeling in
electricity market using deep deterministic policy gradient algorithm,”
IEEE transactions on power systems, vol. 35, no. 6, pp. 4180–4192, Jun.
2020.

[42] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: A survey,” Journal of
Marchine Learning Research, vol. 18, no. 153, pp. 1–43, 2018.

[43] S. Caldas et al., “LEAF: A benchmark for federated settings,” 2018,
arXiv:1812.01097.

Samuel D. Okegbile received the Ph.D. degree in
computer engineering from the University of Preto-
ria, Pretoria, South Africa, in 2021. He is currently
a Postdoctoral Fellow in the Network Intelligence
and Innovation Laboratory, Department of Electrical
and Computer Engineering, Concordia University,
Montreal, QC, Canada. His research interests are in
the area of pervasive and mobile computing which
includes various interesting topics in the human
digital twin, internet of things, data sharing, artificial
intelligence, wireless communication networks, and

blockchain. He has received several awards, including the Horizon postdoc-
toral scholarship, the SENTECH scholarship and the University of Pretoria
Doctoral Scholarship. He is also a regular reviewer for some IEEE journals
and conferences and served as the Publication Chair for the 2023 Biennial
Symposium on Communications.

Jun Cai (Senior Member, IEEE) received the Ph.D.
degree in electrical engineering from the University
of Waterloo, ON, Canada, in 2004. From 2004
to 2006, he was a Postdoctoral Fellow with the
Natural Sciences and Engineering Research Council
of Canada (NSERC), McMaster University, Canada.
From 2006 to 2018, he was with the Department of
Electrical and Computer Engineering, University of
Manitoba, Canada, where he was a Full Professor
and the NSERC Industrial Research Chair. In 2019,
he joined the Department of Electrical and Computer

Engineering, Concordia University, Canada, as a Full Professor and the PER-
FORM Centre Research Chair. His current research interests include edge/fog
computing, eHealth, radio resource management in wireless communications
networks, and performance analysis. He served as the Registration Chair for
QShine 2005, the Track/Symposium Technical Program Committee (TPC) Co-
Chair for the IWCMC 2008, the IEEE Globecom 2010, the IEEE VTC 2012,
the IEEE CCECE 2017, and the IEEE VTC 2019, and the Publicity Co-Chair
for the IWCMC 2010, 2011, 2013, 2014, 2015, 2017, and 2020, the TPC
Co-Chair for the IEEE GreenCom 2018 and the General chair for the 2023
Biennial Symposium on Communications. He also served on the Editorial
Board of the IEEE Internet of Things Journal, the IET Communications, and
Wireless Communications and Mobile Computing. He received the Best Paper
Award from Chinacom in 2013, the Rh Award for outstanding contributions
to research in applied sciences in 2012 from the University of Manitoba, and
the Outstanding Service Award from the IEEE Globecom 2010.

Hao Zheng received the B. S. degree in the College
of Computer Science and Technology, Nanjing Uni-
versity of Aeronautics and Astronautics (NUAA),
Nanjing, China, where he is currently pursuing the
M. S. degree in Computer Science and Technology.
His research interests include reinforcement learn-
ing, human digital twin (HDT), edge computing and
control optimization for servoing systems.

Jiayuan Chen received the M.S. degree with the
College of Computer Science and Technology, Nan-
jing University of Aeronautics and Astronautics
(NUAA), Nanjing, China, where he is currently
pursuing the Ph.D. degree in Computer Science
and Technology. His research interests include re-
inforcement learning, mechanism design and distri-
butionally robust optimization with applications in
resource management and decision making for edge
computing, human digital twin (HDT), and mobile
artificial intelligence-generated content (AIGC).

Changyan Yi (S’16-M’18) received the Ph.D. de-
gree from the Department of Electrical and Com-
puter Engineering, University of Manitoba, MB,
Canada, in 2018. He is currently a Professor with
the College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronau-
tics (NUAA), Nanjing, China. His research inter-
ests include stochastic optimization, mechanism de-
sign, game theory, queueing scheduling and machine
learning with applications in resource management
and decision making for edge computing and edge

intelligence, mobile and human digital twin, ubiquitous intelligent network
and industrial cyber-physical system.


