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Abstract—In this paper, the joint sensor activation and mobile
charging vehicle scheduling for wireless rechargeable sensor
network (WRSN) based industrial Internet of Things (IIoT) is
studied. In the proposed framework, an optimal sensor set is
selected to collaboratively execute a bundle of heterogeneous
industrial tasks (e.g., production-line monitoring), meeting the
quality-of-monitoring (QoM) of each individual task, and we
consider that a mobile charging vehicle (MCV) is scheduled
for recharging sensors before their charging deadlines, i.e., time
instants of running out of their batteries, in order to prevent from
any potential service interruptions (which is one of the key fea-
tures of IIoT). Our goal is to jointly optimize the sensor activation
and MCV charging scheduling for minimizing the system energy
consumption, subject to tasks’ QoM requirements, sensor charg-
ing deadlines and the energy capacity of the MCV. Unfortunately,
solving this problem is nontrivial, because it involves solving
two tightly coupled NP-hard optimization problems. To address
this issue, we design a novel scheme integrating reinforcement
learning and marginal product based approximation algorithms,
and prove that it is not only computationally efficient but also
theoretically bounded with a guaranteed performance in terms of
the approximation ratio. Simulation results show the feasibility
of the proposed scheme and demonstrate its superiority over
counterparts.

Index Terms—WRSN-based IIoT, sensor activation, mobile
charging scheduling, joint optimization, reinforcement learning

I. INTRODUCTION

IT is widely known that wireless sensor network (WSN)
is an essential component for enabling the industrial In-

ternet of Things (IIoT) due to its capability of providing
pervasive surveillance, control, maintenance and automation
in intelligent industrial systems [2]. One one hand, the future
IIoT applications may require tremendously high data rates
and considerably large processing capacities [3], [4], which
will accelerate the energy consumption of sensor devices.
On the other hand, geographically distributed sensor devices
are typically powered by energy-limited batteries, and once a
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sensor device runs out of the energy, its perception ability will
be greatly reduced and the overall system may collapse. To
tackle such sensor energy provisioning problem, researchers
studied how to reduce the energy consumption by optimizing
sensors deployment [5], wake-up and sleeping scheduling [6],
[7], sensing radius adaption mechanism [8], and adapting
sensors’ sampling rate [9], etc. to prolong the system life-
time. However, these methods cannot fundamentally address
the energy shortage, and thus recent advances of wireless
power transfer (WPT) technology [10]–[12] has inspired the
emergence of wireless rechargeable sensor networks (WRSNs)
[13]. With the implementation of WRSNs, mobile charging
vehicles (MCVs) equipped with powerful transceivers can be
dispatched to travel around and replenish the energy of sensors
via coupled magnetic resonance.

Although WRSN is envisioned to boost the energy capacity
of the overall system thanks to the recharging capability of
the MCV, it also suffers from several inherent restrictions.
Particularly, since the energy capacity of the MCV is still rela-
tively limited compared to the energy replenishment demands
from the large number of sensors in the WRSN, the MCV
has to frequently return to the depot for battery recharging or
replacement if its charging route is not properly scheduled
[14]. Obviously, this may significantly degrade the system
efficiency. Therefore, to exploit the advantage of WRSNs,
besides the sensor-end optimizations, the corresponding MCV
charging scheduling should also be carefully addressed. Recent
efforts in this area include energy-efficiency aware charging
scheduling [15], [16], mobile data gathering and charging
scheme [17]–[19], joint optimization of routing protocol and
mobile charging [20], [21]. Nevertheless, there are some criti-
cal issues, especially those related to IIoT applications, which
are of great importance, have not yet been well investigated.

a) As a typical networking system, WRSN-based IIoT is
embarking on the era of massive machine-type Internet of
Things communications (mMTIC) [22], where trillions of
sensors will be connected and work collaboratively, and
thereby a huge amount of energy will be consumed in
sensing, computing and information exchanging. Addition-
ally, sensors in IIoT may be heterogeneous in terms of
sensing radius, types, battery capacities, and industrial tasks
may be highly heterogeneous in terms of task require-
ments (i.e., quality-of-monitoring (QoM) requirements),
locations, types, etc. These motivate us to study how to acti-
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vate the optimal set of sensors for collaboratively executing
on-purpose industrial tasks to minimize the system energy
consumption while meeting the QoM of each individual
task rather than activating all sensors. Furthermore, differ-
ent from the traditional sensor activation problems [23], by
enabling WRSNs, the rechargeability of sensor devices and
the real-time energy replenishment of the MCV should be
both taken into account.

b) For delay and reliability sensitive IIoT applications [24],
[25], sensors must keep up high-intensity operations for
long periods and continuously feed data back to controllers
or actuators. For instance, while a cutting machine is
working, industrial camera sensors must collaboratively
monitor the positions of cutters in real-time and send out
the data in a timely manner [26]. Any unpredictable sensor
failure may cause serious consequences, e.g, unexpected
damages and casualties. Hence, in order to guarantee that
all activated sensors can work continuously without any po-
tential interruptions during the monitoring period, all these
sensors should be recharged by the MCV of the WRSN
before their charging deadlines (i.e., the instant of running
out of the battery). However, due to the limited moving
velocity and the energy capacity constraint of the MCV,
the charging route scheduling has to be well managed
by considering the optimal set of activated sensors, their
energy expenditures, charging time, locations, etc.

However, addressing the aforementioned features simulta-
neously is difficult because i) the optimal sensor set acti-
vation problem can be reduced to a generalized assignment
problem (GAP) which is widely known as NP-hard [27];
ii) unlike the conventional travel salesman problem (TSP)
which aims to minimize the total travel cost only [28], the
MCV charging route scheduling should also take into account
sensors’ charging deadline constraints imposed by continuous
operation requirement, resulting in a much more complicated
combinatorial optimization issue; and iii) the above two prob-
lems (i.e., sensor set activation and MCV charging route
scheduling) are tightly coupled, meaning that they cannot be
solved independently.

To tackle these challenges and fill the gap in the literature, in
this paper, we propose a novel scheme to jointly optimize the
sensor activation and mobile charging scheduling for WRSN-
based IIoT systems. Our goal is to minimize the total energy
consumption of the entire system, subject to tasks’ QoM
requirements, sensor charging deadlines and energy capacity
of the MCV. In the considered model, there is a central
platform (industrial controller) who declares a bundle of tasks
for industrial environment monitoring (e.g., production-line
monitoring) at the beginning of a certain monitoring period,
and is responsible to determine the optimal activated sensor set
and charging route of the MCV. The MCV is required to start
from the depot, travel along the scheduled route and return to
the depot at the end of the trip. While traveling on its route,
the MCV charges each activated sensor before its charging
deadline expires. To solve such joint sensor activation and
mobile charging scheduling problem, we design an efficient
scheme integrating reinforcement learning (RL) and marginal

product based approximation algorithms.
The main contributions of this paper are summarized in the

following.
• With the objective of minimizing the total energy con-

sumption of the entire system (including the energy
consumption of all sensors and the MCV) under the
constraints of satisfying the specific features and cor-
responding requirements for WRSN-based IIoT applica-
tions, a joint optimization of sensor activation and mobile
charging scheduling problem is formulated.

• A novel solution scheme integrating reinforcement learn-
ing and marginal product based approximation algorithms
is developed, and is prove to be not only computationally
efficient but also theoretically bounded with a guaranteed
performance in terms of the approximation ratio.

• Extensive simulations are conducted to demonstrate the
superiority of the proposed solution scheme compared to
counterparts.

The rest of this paper is organized as follows: Section II
briefly reviews the related work and highlights the novelties
of this paper. Section III introduces the system model and
problem formulation of the joint optimization of sensor acti-
vation and mobile charging scheduling for WRSN-based IIoT
systems. In Section IV, the complexity of the formulated op-
timization problem is first analyzed, and then a novel scheme
integrating reinforcement learning and marginal product based
approximation algorithms is proposed. Section V analyzes the
theoretical performance of the proposed scheme. Simulation
results are provided in Section VI, followed by the conclusion
in Section VII.

II. RELATED WORK

Due to the rapid development of IIoT, the scale and den-
sity of sensor devices are expected to increase dramatically,
resulting in a substantial amount of energy consumption [29].
To support this new paradigm and overcome the energy
bottleneck, WRSN has emerged as an alternative of WSN with
a higher flexibility in energy replenishment [20].

It is worth noting that, compared to the energy management
in WSNs (which commonly focused on sensor-end optimiza-
tions [5]–[8]), WRSNs further involve the energy expenditure
and charging scheduling of the MCVs, and thus the corre-
sponding energy management becomes much more compli-
cated and has attracted explosive research attentions recently.
For instance, Baek et al. in [15] developed a novel joint data
collection and mobile charging scheme in the WRSN by using
an unmanned aerial vehicle (UAV) which can execute the data
collection and conduct the energy charging simultaneously for
improving the energy efficiency of the entire network. Yang
et al. in [16] proposed a dynamic charging scheme based on
the actor-critic reinforcement learning algorithm to minimize
the number of dead sensor devices while maximizing the
energy efficiency. Han et al. in [20] jointly considered the
routing protocol and mobile charging scheduling to achieve
global energy balance. However, all of them were restricted to
improving the energy efficiency only, but ignored the potential
requirements of sensing qualities imposed by mission-critical
applications, such as IIoT applications.
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Fig. 1. An illustration of the considered WRSN-based IIoT system.

Some researches have been dedicated in studying how
the sensing quality of various tasks and the network en-
ergy efficiency can be guaranteed simultaneously for WRSNs
[30]–[32]. Specifically, Dai et al. in [31] designed a joint
charging and scheduling scheme (i.e., choosing sensors to
charge and scheduling sensors’ activation) to maximize the
QoM of stochastic events. Wu et al. in [30] solved a collab-
orated task-driven mobile charging and scheduling problem
for maximizing the overall task utility, where the traveling
energy consumption of the MCV was minimized. However,
both works did not consider that there may exist stringent
constraints on sensing qualities of heterogeneous tasks, and
hence may not be suitable for IIoT applications. The most
related research is [32], in which the authors proposed a joint
energy replenishment and operation (active/sleep) scheduling
mechanism for WRSN using an MCV with a given charging
capacity, with the objective of maximizing the network lifetime
while meeting a strict QoM. However, this paper assumed that
all sensors could continuously operate for months or even
years after fully recharging, and the charging and traveling
time of the MCV were neglected. These do not fit the features
of IIoT, where all sensors must keep high-intensity work with
relatively large energy consumption rate and may encounter
service interruptions if they cannot be recharged in time.

In summary, different from all existing work, this paper
studies a joint optimization of sensor activation and mobile
charging scheduling for WRSN-baesd IIoT systems, subject
to tasks’ QoM requirements, sensor charging deadlines and
the energy capacity of the MCV.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this section, the system model of WRSN-based IIoT
is first described. Then, the corresponding joint optimization
of sensor activation and mobile charging scheduling problem
is formulated. For convenience, Table I lists some important
notations used in this paper.

A. Network Model

Consider a WRSN-based IIoT system, as illustrated in
Fig. 1, consisting of a group of heterogeneous industrial
production-line monitoring tasks, a set of stationary recharge-
able sensors N with cardinality of |N | = N randomly

TABLE I
IMPORTANT NOTATIONS IN THIS PAPER

Symbol Meaning
Z set of tasks
N set of sensor nodes
T time duration of a monitoring period
M total amount of tasks
J total amount of task types
H set of activated sensors
Hφ set of sensors that do not need to be charged
Hψ set of sensors that need to be charged
LHψ charging sequence vector of the MCV
ri sensing radius of sensor i
Einitiali initial energy amount of sensor i
Ecapacityi battery capacity of sensor i
Emini minimum energy for sensor i to be operational
Ci energy consumption rate of sensor i
Edemandi charging demand of sensor i
ddli charging deadline of sensor i
pi,zmj detection probability to task zmj of sensor i
αi decay factor of sensor i
Nj set of sensors specialized in task type j
ηzmj QoM requirement of task zmj
dist(i, zmj ) Euclidean distance between sensor i and task zmj
EMCV energy capacity of the MCV
v moving velocity of the MCV
δ charging rate of the MCV
γ traveling energy consumption rate of the MCV
ag gth visiting target of the MCV
Λag arrival time of the MCV at target ag

deployed in a certain area, and an MCV which is responsible
for replenish energy of all sensors if necessary.

At the beginning of a monitoring period, the industrial con-
troller declares a bundle of monitoring tasks Z = {zmj |∀m ∈
{1, 2, ...,M},∀j ∈ {1, 2, . . . , J}}, where m and j stand
for the index of the monitoring task and its corresponding
type, respectively. For meeting the QoM requirements of all
these tasks while avoiding excessive energy consumption, an
appropriate group of sensors H ⊆ N should be activated and
working collaboratively. In practice, sensors’ sensing radius
are inherently limited, which can be denoted by ri, ∀i ∈ N .
In addition, we assume that different types of sensors may
only be able to execute tasks fitting their types. For example,
noisy sensors can only detect noises, and vision sensors are
particularly for capturing images of target objects [33]. Define
Nj as the set of sensors specialized in task type j, and it is
obvious that ∪Nj = N , ∀j ∈ {1, ..., J}. Notice that, each
sensor i ∈ N can execute task zmj ∈ Z only when the task
zmj is located within its sensing radius ri, and falls into its
targeted type. Besides, in each monitoring period, each sensor
is assumed to be capable of executing at most one task due
to the hardware limitation [34]. In this paper, we adopt the
widely used probabilistic sensing coverage (PSC) model [35]
to describe sensors’ contributions to certain monitoring tasks,
and denote pi,zmj as the detection probability of task zmj by
sensor i, which can be calculated as

pi,zmj =

{
e−αi·dist(i,z

m
j ), if dist

(
i, zmj

)
≤ ri, i ∈ Nj ,

0, otherwise,
(1)
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where αi, ∀i ∈ N , is a factor that describes how fast the
sensing capacity decays with the distance. We call αi the
decay factor of sensor i, which depends on sensor i’s physical
characteristics and its implementation environment. Besides,
dist

(
i, zmj

)
indicates the Euclidean distance between the

locations of sensor i and task zmj .
To meet the QoM requirement of each individual task, the

collaborative detection probability of sensor set H (i.e., these
are activated) to the monitoring task zmj has to be larger or
equal to a pre-determined threshold ηzmj , i.e.,

1−
∏
i∈H

(1− pi,zmj ) ≥ ηzmj , (2)

where ηzmj measures the minimum QoM requested by each
task zmj [32].

For IIoT applications, it is further required that if sensors
are activated to execute tasks, they should work continuously
during the monitoring period. Otherwise, service interruptions
may occur, leading to serious consequences. However, the
battery capacity of each sensor Ecapacityi is relatively limited,
and once the battery is completely consumed, the sensor stops
working. To this end, the MCV is employed with an energy
capacity EMCV which travels starting at the depot located at
the center of the area, charges dying sensors in H and returns
to the depot for battery replenishment at the end.

We denote Eintiali as the initial energy of each sensor i ∈ N
at the beginning of the monitoring period. Without loss of
generality, let us assume that for each sensor i ∈ N , Eintiali

is sufficiently large to guarantee that Eintiali ≥ Emini , where
Emini is the minimum energy for i ∈ N to be operational
[36]. Here, we characterize the energy consumption rate of
each sensor i ∈ N by Ci. Note that it is possible that some
sensors may have abundant amount of energy to support them
working continuously during the monitoring period and are
not necessary to be recharged by the MCV. We classify these
sensors into setHφ ⊆ H, and categorize the others which have
to be recharged by the MCV into set Hψ = H\Hφ. Then, the
amount of energy that each sensor required to be recharged
can be expressed as

Edemandi =

{
T · Ci − (Einitiali − Emini ), ∀i ∈ Hψ,
0, ∀i ∈ Hφ,

(3)

where T is the time duration of a monitoring period.
For ensuring that all activated sensors can execute tasks

continuously, the MCV should charge the sensors in set Hψ
before each of its charging deadline ddli, i ∈ Hψ expires,
which can be calculated by

ddli =
Einitiali − Emini

Ci
,∀i ∈ Hψ. (4)

Besides, let us denote the charging route of the MCV
by a vector that consists of its visiting targets LHψ =
{a0, a1, ..., ag, ..., a|Hψ|, a|Hψ|+1}, where ag signifies the gth
visiting target (i.e., the targeted sensor for recharging). Specif-
ically, a0 = a|Hψ|+1 = 0 indicates that the MCV travels
starting from the depot and returns at the end, and ag ∈ Hψ
for g = 1, . . . , |Hψ|. Following the convention in the literature

[16], [30], [31], we consider that each sensor i ∈ Hψ can only
be visited once, that is ag 6= ag′ for g 6= g′. Furthermore,
denote the arrival time of the MCV at a visiting target ag as
Λag . Clearly, Λag depends on the arrival time of the previously
visited target ag−1, the service time (i.e., battery recharging
time) for target ag−1, and the traveling time of the MCV from
ag−1 to ag . Hence, Λag can be expressed as

Λag = Λag−1
+
Edemandag−1

δ
+
dist (ag−1, ag)

v
,∀ag ∈ LHψ , (5)

where δ and v stand for the the charging rate and the velocity
of the MCV, respectively. According to the definition in (3),
Edemandag depicts the amount energy that the target ag (or
sensor ag) demands for recharging. In particular, Edemanda0

=
Edemanda|Hψ|+1

= 0, and Λa0 = 0, because both a0 and a|Hψ|+1

signify the depot.

B. Problem Formulation

The energy consumption of the entire WRSN-based IIoT
system includes the energy consumption of the MCV and the
energy consumption of all sensors in H for executing tasks.
Although the energy cost of the MCV further consists of both
the traveling energy cost and the recharging energy cost, all
recharging energy will be consumed completely by sensors
for a higher energy utilization efficiency, and thus such term
is implied by the energy cost of sensors in H. Therefore, the
total energy consumption can be expressed as

Etotal(H,LHψ )=

|Hψ|∑
g=0

γ · dist (ag, ag+1)+
∑
i∈H

T · Ci,

where γ represents the energy consumption rate of MCV’s
traveling, so that the first term depicts the traveling energy
consumption of the MCV and the second term is the energy
consumption of all activated sensors.

Then, with the aim of minimizing the total energy con-
sumption Etotal

(
H,LHψ

)
, the joint optimization of sensor

activation (i.e., selecting the optimal set of sensors to activate,
denoted by H) and mobile charging scheduling (i.e., deter-
mining the optimal charging route, denoted by LHψ ) can be
formulated as

[P1] : min
H,LHψ

Etotal(H,LHψ ) (6)

s.t., 1−
∏
i∈H

(1− pi,zmj ) ≥ ηzmj ,∀z
m
j ∈ Z, (6a)

Λag ≤ ddlag , g=1, . . . |Hψ|, (6b)
ag 6= ag′ , g 6= g′; g=1, . . . |Hψ|, g′=1, . . . |Hψ|, (6c)
|Hψ|∑
g=0

γ·dist (ag, ag+1)+

|Hψ|∑
g=1

Edemandag ≤ EMCV , (6d)

a0 = 0, a|Hψ|+1 = 0, (6e)

H ⊆ N , (6f)
H = Hφ ∪Hψ, (6g)
LHψ = {a0, a1, ..., ag, ..., a|Hψ|, a|Hψ|+1}, (6h)
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Fig. 2. An illustration of the considered two-layer coupled problem.

where constraint (6a) states that the QoM of each task should
be guaranteed; constraint (6b) imposes a strict requirement that
the MCV should always be scheduled to arrive before each
sensor’s charging deadline expires; constraint (6c) means that
the MCV should not visit the same sensor more than once
in the scheduled charging route; constraint (6d) indicates that
the total energy consumption of the MCV should be less than
or equal to its energy capacity EMCV ; and constraint (6e)
illustrates that the MCV starts at the depot and returns to the
depot at the end.

IV. JOINT SENSOR ACTIVATION AND MOBILE CHARGING
SCHEDULING

In this section, we first prove that the formulated problem
[P1] is NP-hard due to the combination of two coupling NP-
hard problems. Then, we propose a novel solution scheme
integrating reinforcement learning and marginal product based
approximation algorithms, which is later shown to be not only
computationally efficient but also performance guaranteed in
terms of the approximation ratio.

A. NP-Hardness of the Joint Optimization Problem

From the formulation of problem [P1], we can observe
that the joint optimization of sensor activation and mobile
charging scheduling actually includes two-layer optimizations.
The upper layer optimization mainly addresses the sensor set
selection with tasks’ QoM constraints, where the objective is
to minimize the energy consumption of the activating sensor
set H. The lower layer optimization aims to determine the
charging route of the MCV by taking into account sensors’
charging deadlines and MCV’s energy budget, where the
objective is to minimize the energy consumption of the MCV.
Obviously, these two optimization problems are tightly cou-
pled, as illustrated in Fig. 2, because the input of the lower
layer problem depends on the output of the upper layer one,
while the optimization of the upper layer problem is in turn
subject to the results of the lower layer one.

If the charging route LHψ of the MCV is given, we can get
the subset of candidate sensors N ′ ⊆ N , where all sensors in
N ′ have sufficient energy (namely with either sufficiently large
initial energy or energy replenished by the MCV in route LHψ )

to execute tasks continuously during the monitoring period.
Then, the upper layer sensor set activation problem becomes

[P2] : min
H

∑
i∈H

T · Ci

s.t., (6a), (6g) and H ⊆ N
′
.

Lemma 1: Problem [P2] is NP-hard.
Proof: It is obvious that problem [P2] can be reduced to

a generalized assignment problem (GAP). Specifically, given
any instance of the GAP, the instance of problem [P2] can be
easily constructed by considering that the detection probability
of each sensor pi,zmj , i ∈ N is analogous to the size of each
item, QoM of each tasks ηzmj , z

m
j ∈ Z is analogous to the

capacity of each bin, the energy consumption of each sensor
T · Ci, i ∈ N is analogous to the profit of each item, and
setting the values of pi,zmj , ηzmj and T · Ci be negative. Since
GAP is well-known as NP-hard [27], problem [P2] must also
be NP-hard.

While if the set of activated sensors H is given, the set
of sensors that require to be recharged, i.e., Hψ , can also
be obtained. Then, the lower layer MCV charging route
scheduling problem becomes

[P3] : min
LHψ

|Hψ|∑
g=0

γ · dist (ag, ag+1)

s.t., (6b), (6c), (6d), (6e) and (6h).

Lemma 2: Problem [P3] is NP-hard.
Proof: Since the traveling salesman problem (TSP) is

well-known as NP-hard [28], and problem [P3] is to find
a TSP tour further constrained by the deadlines of visiting
each target and the energy capacity of the MCV, meaning that
problem [P3] is even more complicated than the conventional
TSP, problem [P3] must be NP-hard.

With Lemmas 1 and 2, the following corollary is obvious.
Corollary 1: Problem [P1] is NP-hard.
Since problem [P1] is NP-hard, it is impossible to solve

it by brute force algorithms, which may result in a consid-
erably high computational complexity. Thus, to circumvent
this difficulty, we devise an efficient solution to problem
[P1]. Specifically, we first solve the MCV charging scheduling
problem by applying a reinforcement learning (RL) approach,
where the RL model only needs to be trained once at the
beginning and can be used in later monitoring periods. Then,
we develop a marginal product based approximation algorithm
on top of the trained RL model, which can jointly optimize
the sensor set selection and the MCV charging scheduling in
an iterative manner.

B. MCV Charging Scheduling

Observed that, as a subproblem of [P1], [P3] is actually a
sequential decision problem (where the charging route of the
MCV can be determined in sequence), and thus the idea of
reinforcement learning can be adopted in its solution design
[37], [38]. Particularly, we can apply the actor-critic method
[39] to train the corresponding neural network for eventually
obtaining the solution.
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1) Learning Model Construction: First of all, by consider-
ing that the gth visiting target in the MCV’s charging route is
the output of the solution at gth time step, we can formulate
problem [P3] in the form of a Markov decision process (MDP)
[40], which is defined by a tuple {Sg, Ag, R, S

′

g}, where
Sg is the state space at time step g (i.e., MCV’s position,
remaining energy, and targets that have already been visited
by the MCV, etc.), Ag is the action space at time step g (i.e.,
targets that can be chosen to visit), R is the reward, and S

′

g

is the state transition after the agent executing the action at
time step g. Then, at each time step g, the agent (i.e., the
MCV in this paper) determines an action ag ∈ Ag (visiting
target) according to the state Sg . When the termination state
is reached (i.e., the MCV completes all charging tasks and
returns to the depot) after executing a series of actions, the
reward R can be calculated (i.e., in this paper, the reward can
be calculated from the obtained charging route of the MCV).
Hereafter, we describe the agent, state, action, policy, reward
and system state transition for the considered MCV charging
scheduling problem in detail.

Agent: The agent is the MCV that is responsible for making
decisions to visit which target (i.e., which sensor or the depot)
at each time step.

State: The state space includes locations, charging deadlines
and energy demands of all sensors, and the position and
remaining energy of the MCV. At each time step g, the state
space can be defined as Sg = {s0

g, s
1
g, . . . , s

i
g, . . . , s

|Hψ|
g },

where |Hψ| indicates the number of sensors that need to be
recharged. Each sig is further represented by a sequence of
tuples {sig = (ci, dig)}, where ci and dig stand for the static and
dynamic elements of target i, respectively. It is worth noting
that dynamic elements are allowed to alter among different
time steps, while static elements are invariant. To be more
specific, ci includes target i’s 2-D coordinate and the charging
deadline, dig consists of the energy demand of target i (which
becomes 0 after charging by the MCV) and the position and
remaining energy of the MCV. Therefore, sig can be viewed
as a vector of features that depicts the state of target i at time
step g. Particularly, s0

g represents attributes of the depot, which
has a location at the center of the area, an infinite charging
deadline, and no energy demand.

Action: For the MCV, its action signifies the next target to
visit in its charging route.

Policy: The policy can be represented by a mapping function
π which links an action ag with a state Sg , i.e., ag = π(Sg).

Reward: Notice from the formulation of problem [P3]
that, besides the objective of minimizing the traveling energy
consumption of the MCV, constraint (6b) imposes a strict
requirement that the MCV should arrive at each sensor for
recharging before its charging deadline expires. To tackle this,
we first define the charging delay for each sensor i ∈ Hψ , as

deli =

{
0, if Λi ≤ ddli,
Λi − ddli, otherwise.

(7)

Then, the reward (or actually the cost) of a charging route can
be calculated by the sum of traveling energy consumption of

the MCV and total charging delay, which can be expressed as

R =

|Hψ|∑
g=0

dist(ag, ag+1) +

|Hψ|∑
g=1

delag (8)

System State Transition: As mentioned in the definition of
State, only the dynamic elements of a target are variant at
every time step. The specific update process of the state is as
follows. Recall that all sensors’ energy demands are calculated
according to (3) and the energy of the MCV is EMCV at
time step 0. At each time step g, MCV selects a sensor from
the available set (i.e., edemandi (g + 1) 6= 0,∀i ∈ Hψ , where
edemandi (g+ 1) is the energy demand of sensor i at time step
g + 1) or the depot to visit in the next time step. After the
MCV visit sensor i ∈ Hψ , the energy demands of sensors and
residual energy of MCV are updated as

edemandi (g + 1) =

{
0, if ag = i,

edemandi (g), otherwise,

eMCV (g + 1) = eMCV (g)− edemandag (g).

Additionally, when the MCV visits the depot at the end of
charging route, its energy is replenished, and thus we have

eMCV (|Hψ|+ 1) = EMCV .

In summary, for solving problem [P3], we can equivalently
solve the above MDP, in which the objective is to minimize
the reward (because it is actually the cost).

2) Reinforcement Learning based on Actor-Critic Method:
To solve the formulated MDP, we construct two neural
networks (NNs), i.e., actor NN and critic NN, which are
associated with weight vectors θ and ξ, respectively. As shown
in Fig. 3, firstly, the states (i.e., locations, charging deadlines
and energy demands of sensors, and the position and remaining
energy of the MCV) are inputted to the actor NN. Then, the
actor NN calculates a probability distribution over the action
space, and choose an action according the probability distribu-
tion. Afterward, the reward R can be obtained by calculating
from the MCV implementing a series of actions (which forms
the charging route of the MCV) in the environment (WRSN).
Meanwhile, the reward approximation can be acquired from
the critic NN according to the current state. Finally, the reward
and its approximation are used together to update the actor NN
and critic NN. The details of how the actor NN and the critic
NN work are presented as follows.

Actor NN: As illustrated in Fig. 4, the actor NN consists of
two main components, namely encoder and decoder. At each
time step g = 0, 1, . . . , |Hψ| + 1, the input is the state infor-
mation, i.e., Sg = {s0

g, s
1
g, . . . s

|Hψ|
g }. Given this, the action

ag points to a sensor or the depot in Sg , determining the next
visiting target. The states of sensors and the MCV in Sg are
updated every time step after a target has been visited. When
the energy demands of all sensors are satisfied, the process
is terminated. The output of the model is a permutation of
sensors and the depot, LHψ = {a0, a1, ..., a|Hψ|, ..., a|Hψ|+1}.

To map input S0 to output LHψ , a probability chain rule
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Actor NN

Critic NN

Policy Gradiant

Loss Function

Update 

Update 

State
Sensors  locations & charging deadlines & energy demands

MCV s position & remaining energy

Action
Selecting next target to visit

Reward
Obtained charging route s the sum of traveling energy 

consumption of the MCV and the total charging delay

Reward Approximation

Fig. 3. Actor-critic method for the MCV charging scheduling.

At time step g+1, select sensor 2

Input

States

Encoder

Embedding Vector

Decoder

Attention

Fig. 4. Actor NN model for the MCV charging scheduling.

[41] is utilized:

P
(
LHψ | X0

)
=

|Hψ|∏
g=0

P (ag+1 | a0, a1, · · · , ag, Sg) . (9)

Eq. (9) provides the probability of selecting the next visiting
target conditioned on a0, a1, . . . , ag , i.e., the targets that have
already been visited. A modified pointer network similar to
that in [42] is used to further tackle (9). Its basic structure
is the sequence-to-sequence model [43], a powerful model in
the machine translation field, which can map one sequence to
another. As a key enabler, both the encoder and decoder of
this model have to be well designed.

Encoder is applied to encode the input sequence into a
code vector containing the knowledge of the input. Since the
attributes of the targets convey no sequential information and
the order of targets in the input is trivial, unlike conventional
works that commonly utilized the recurrent neural network

(RNN), a simple embedding layer is adopted to encode the
input which can significantly decrease the computational com-
plexity without sacrificing the efficiency [42]. In this paper, we
apply a 1-dimensional (1-D) convolution layer to encode the
input to a high-dimensional vector.

For the decoder, since we need to store the knowledge
of all previous steps a0, a1, · · · , ag to assist for obtaining
ag+1, the RNN with gated recurrent unit (GRU) is adopted.
The hidden state of RNN decoder dg at any step g can
memorize the previously selected visited targets. dg is com-
bined with ρ0

g, ρ
1
g, . . . ρ

|Hψ|
g (which is the encoding of the

inputs s0
g, s

1
g, . . . s

|Hψ|
g ) to calculate the conditional probabil-

ity P (ag+1 | a0, a1, · · · , ag, Sg) over the next step of target
selection. As shown in Fig. 4, to select the next target at
step g + 1, the hidden state dg is obtained through the
decoder. Afterward, in conjunction with ρ0

g, ρ
1
g, . . . ρ

|Hψ|
g , the

conditional probability of determining the next target can be
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calculated by further applying the attention mechanism [44].
In general, the attention mechanism is utilized to calculate

the degree of correlation of each input at the time step g.
More attention is given to the most relevant one which is
more likely to be selected as the next target. Following such
idea, in this work, its calculation can be expressed as

uig = wT tanh
(
W1ρ

i
g +W2dg

)
, i ∈ (0, 1, ..., |Hψ|) ,

P (ag+1 | a0, a1, · · · , ag, Sg) = softmax
(
uig
)
,

where w, W1, W2 are learnable parameters. For each target
i, its uig is computed by dg and its encoder hidden state
ρig , as shown in Fig. 4. The softmax operator is used to
normalize u0

g, u
1
g, . . . , u

|Hψ|
g , and the probability for selecting

each target i at time step g can then be obtained. For example,
in Fig. 4, sensor 2 has the maximum conditional probability
P (ag+1 | a0, a1, · · · , ag, Sg) at step g + 1, and hence it is
selected as the next target.

Critic NN: Similar to [16], [42], the critic NN consists of
four convolution layers as shown in Fig. 5, and all of them
can be trained by a training process.

Here, we adopt the well-known actor-critic method to train
the network. The policy π is parameterized by parameters θ,
where θ is the vector of all learnable variables in the actor NN.
It is worth noting that, during the training process, the actor
NN selects the next target by sampling from the probability
distribution instead of choosing the target with the highest
probability in a greedy way. In addition, the critic NN with
parameters ξ is used to evaluate the reward approximation
given a specific state to iteratively improve the policy.

The training is conducted in an unsupervised way, and
its detailed procedure is presented in Algorithm 1. During
the training process, we generate problem instances from
distributions {ΦΩ1 ,ΦΩ2 , . . . ,ΦΩµ , . . . }, where Ω signifies dif-
ferent input features of the targets, i.e., the targets’ locations,
sensing radii, charging deadlines, etc. K problem instances
are sampled from {ΦΩ1

,ΦΩ2
, . . . ,ΦΩµ , . . . } for training the

actor and critic neural networks. For each problem instance
with different settings, the actor NN with current parameters
θ produces the permutation of targets (charging route of the
MCV) and obtains the corresponding reward. Then policy
gradient is computed in line 11 to update the actor NN (refer to
[39] for details of the formula of policy gradient). V

(
Xk

0 ; ξ
)

here is the reward approximation of problem instance k
calculated by the critic NN. After that, the critic NN is updated
in line 12 by aiming to reduce the difference between the
reward and its approximation.

By running Algorithm 1, all parameters of the actor NN and
critic NN can be optimized, and the optimal charging route of
the MCV can be obtained accordingly.

C. Joint Optimization Algorithm

Based on the solution to problem [P3], we are now ready
to design a joint sensor activation and charging scheduling
scheme (called JSACS) to the original two-layer optimization
problem [P1]. The core idea of JSACS is to iteratively add a
sensor to H and calculate the corresponding charging route of
the MCV until each task’s QoM, i.e., ηzmj ,∀z

m
j ∈ Z , is met.

Algorithm 1: RL based on actor-critic training
Output: The optimal model M∗ = [θ∗, ξ∗].

1 Initialize: Let the actor network with random weights θ and critic
network with random weights ξ;

2 for episode ← 1, 2, . . . do
3 generate K problem instances from {ΦΩ1 ,ΦΩ2 , . . . ,ΦΩµ,...};
4 for k ← 1, . . . ,K do
5 Initialize time step g ← 0; Get initial state Sk0 ;
6 while not terminated do
7 select the next target akg+1 according to

P
(
akg+1|ak1 , . . . , akg , Skg

)
;

8 Update Skg to Skg+1 by leaving out the visited targets
and updating the residual energy of MCV;

9 compute reward Rk ;

10 dθ ← 1
K

∑K
k=1

(
Rk − V

(
Sk0 ; ξ

))
∇θ logP

(
LkHψ | S

k
0

)
;

11 dξ ← 1
K

∑K
k=1∇ξ

(
Rk − V

(
Sk0 ; ξ

))2;
12 Update θ using dθ and ξ using dξ;

13 Determine θ∗ = θ, ξ∗ = ξ.

Algorithm 2: The implementation of JSACS
Output: H, LHψ .

1 Initialize: Let N canzmj
= {i|pi,zmj 6= 0, ∀i ∈ N},

N can =
∑

zmj ∈Z
N canzmj

, Zun = Z , Hφ(0) = ∅,

Hψ(0) = ∅,H(0) = ∅, LHψ(0) = ∅, τ = 0;
2 while Zun is nonempty do
3 τ = τ + 1;
4 for each i ∈ N can do
5 if Einitiali − Emini ≥ T · Ci then
6 h = ∅;
7 else
8 h = {i};
9 Call the model M∗ = [θ∗, ξ∗] in Algorithm 1 to get

a charging route LHψ(τ−1)∪h which meets each
sensor’s charging deadline (If there is no charging
route that meets the sensor’s charging deadline or the
energy consumption of the MCV exceeds EMCV ,
delete the sensor i from N can);

10 iselected =

11 arg max
i∈Ncan

σ(H(τ−1)∪{i})−σ(H(τ−1))
Etotal(H(τ−1)∪{i},LHψ(τ−1)∪h)−Etotal(H(τ−1),LHψ(τ−1))

;

12 Update H(τ) = H(τ − 1) ∪ {iselected};
13 if Einitialiselected

− Eminiselected
≥ T · Econsumeiselected

then
14 Update Hφ(τ) = Hφ(τ − 1) ∪ {iselected},

LHψ(τ) = LHψ(τ−1) ;

15 else
16 Update Hψ(τ) = Hψ(τ − 1) ∪ {iselected},

LHψ(τ) = LHψ(τ−1)∪{iselected};

17 for each zmj ∈ Zun do
18 if 1−

∏
i∈H(τ)(1− pi,zmj ) ≥ ηzmj then

19 Update N can = N can\{N canzmj
},

Zun = Zun\{zmj };

20 Update N can = N can\{iselected};
21 Determine H = H(τ), LHψ = LHψ(τ).

Denote the selected sensor set as H(τ) = Hφ(τ) ∪ Hψ(τ)
at the end of iteration τ , where Hφ(τ) and Hψ(τ) are the
selected sensor sets that do not need to be charged and need
to be charged, respectively. Initially, the candidate sensor
set is denoted by N can =

∑
zmj ∈Z

N can
zmj

, where N can
zmj

=
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Fig. 5. Critic NN model for the MCV charging scheduling.

{i|pi,zmj 6= 0,∀i ∈ N}, and the set of QoM unsatisfied tasks is
Zun = Z . In addition, H(0) = ∅, Hφ(0) = ∅ and Hψ(0) = ∅.
Besides, the charging route LHψ(0) = ∅ and τ = 0. In each
iteration τ , for each sensor i ∈ N can, we update the charging
route by adding sensor i toHψ(τ−1), i.e., LHψ(τ−1)∪h, where
h indicates whether this sensor has to be recharged or not:

h =

{
∅, if Einitiali − Emini ≥ T · Ci,
{i}, otherwise.

After that, among all candidate sensors, the sensor with the
largest marginal product1 is selected in this iteration. Here, the
marginal product is defined as the increase of sum of QoM of
all tasks brought by consuming a unit of energy of the entire
system. Mathematically, in each iteration τ , a new sensor is
selected according to

arg max
i∈N can

σ(H(τ−1)∪{i})−σ(H(τ−1))
Etotal(H(τ−1)∪{i},LHψ(τ−1)∪h)−Etotal(H(τ−1),LHψ(τ−1))

,

where σ(H(τ)) =
∑
zmj ∈Z

σzmj (H(τ)) represents the sum of
QoM obtained by all tasks at the end of iteration τ and,
σzmj (H(τ)) = min{1 −

∏
i′∈H(τ)(1 − pi′,zmj ), ηzmj }. Then,

H(τ) is updated. If the newly selected sensor iselected satisfies
Einitialiselected

− Eminiselected
≥ T · Econsumeiselected

, it is added to Hφ(τ),
and the charging route is updated as LHψ(τ) = LHψ(τ−1).
Otherwise, iselected is added to Hψ(τ), and the charging route
is updated as LHψ(τ) = LHψ(τ−1)∪{iselected}. Afterwards, we
check whether each task’s QoM ηzmj ,∀z

m
j ∈ Zun is met or

not, and exclude set N can
zmj

from set N can if a task’s QoM
ηzmj has already been met. If all tasks’s QoM are satisfied, the
iteration process stops. Otherwise, by excluding the selected
sensor iselected from set N can, the iteration process continues.
Algorithm 2 summarizes all detailed steps (pseudo code) of
the proposed JSACS.

V. PERFORMANCE ANALYSIS

In this section, we first conduct a series of theoretical
analysis on the monotonicity and submodularity of σ(H),

1Marginal product is a concept in economics, which refers to the increase
in the total output brought by adding a unit of an input, assuming that the
quantities of other inputs are maintained as constant [45].

i.e., the sum of QoM of all tasks. Based on these, we then
prove that the proposed scheme, i.e., JSACS, is not only
computationally efficient but also theoretically bounded with
a guaranteed performance, particularly for the upper-layer
marginal product approximation.

A. Properties of σ(H)

Hereafter, we show that σ(H) is not only monotone but also
submodular. For clarity, we introduce two sets Ā ⊆ N can and
B̄ ⊆ N can, which are both the subsets of activated sensors to
execute tasks in Z .

Definition 1: Given a finite ground set N can, a real-valued
set function is defined as σ(H) : 2N

can → R, and σ(H)
is monotonically nondecreasing and submodular if only if it
satisfies the following conditions, respectively [46].

1) σ(Ā ∪ {i}) ≥ σ(Ā), for Ā ⊆ N can and i ∈ N can\Ā
(monotone);

2) σ(Ā ∪ {i})− σ(Ā) ≥ σ(B̄ ∪ {i})− σ(B̄), for Ā ⊆ B̄ ⊆
N can, i ∈ N can\B̄ (submodular).

Theorem 1: σ(H) is monotone and submodular.
Proof: After adding sensor i ∈ N can into Ā ⊆ N can to

execute task zm
′

j′ ∈ Zun, we have σzm′
j′

(Ā ∪ {i}) = min{1−∏
i′∈Ā∪{i}(1 − pi′,zm′

j′
), ηzm′

j′
}, while other tasks’ QoM are

constant. Additionally, σzm′
j′

(Ā) = min{1 −
∏
i′∈Ā(1 −

pi′,zm′
j′

), ηzm′
j′
}, and thus σzm′

j′
(Ā∪{i}) ≥ σzm′

j′
(Ā). According

to the definition of σ(H), we have the following inequality:

σ(Ā ∪ {i}) =
∑
zmj ∈Z

(σzmj (Ā ∪ {i})) ≥ σ(Ā) =
∑
zmj ∈Z

(σzmj (Ā)), i ∈ N can,

which implies that σ(H) is monotone.
Then, our remaining issue is to prove that σ(H) is also

submodular by showing that σ(Ā ∪ {i}) − σ(Ā) ≥ σ(B̄ ∪
{i}) − σ(B̄), for Ā ⊆ B̄ ⊆ N can, i ∈ N can\B̄. Considering
that adding sensor i ∈ N can\B̄ into both sets Ā and B̄ to
execute task zm

′

j′ ∈ Zun, it is equivalent to show that

σzm′
j′

(Ā ∪ {i})− σzm′
j′

(Ā) ≥ σzm′
j′

(B̄ ∪ {i})− σzm′
j′

(B̄). (10)
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Since the QoM of task zm
′

j′ is can not be met by sets Ā
and B̄, and following from the above analysis (i.e., σ(H) is
monotone), we have

σzm′
j′

(Ā) ≤ σzm′
j′

(B̄) < ηzm′
j′
. (11)

Then, from (11), we can easily prove that∏
i′∈Ā

(1− pi′,zm′
j′

) ≥
∏
i′∈B̄

(1− pi′,zm′
j′

). (12)

Since there are three different relationships between
σzm′

j′
(B̄ ∪ {i}) and σzm′

j′
(Ā ∪ {i}), we analyze the submod-

ularity of σ(H) in three cases. For notation simplicity, let
α = (1− pi,zm′

j′
).

Case 1 (If σzm′
j′

(B̄ ∪ {i}) < ηzm′
j′

): In this case, we have

σzm′
j′

(Ā ∪ {i}) < ηzm′
j′

.

Meanwhile, we can derive that

σzm′
j′

(Ā ∪ {i})− σzm′
j′

(Ā)

= [1−
∏
i′∈Ā

(1− pi′,zm′
j′

) · α]− [1−
∏
i′∈Ā

(1− pi′,zm′
j′

)]

= [
∏
i′∈Ā

(1− pi′,zm′
j′

)] · [1− α],

(13)

and

σzm′
j′

(B̄ ∪ {i})− σzm′
j′

(B̄)

= [1−
∏
i′∈B̄

(1− pi′,zm′
j′

) · α]− [1−
∏
i′∈B̄

(1− pi′,zm′
j′

)]

= [
∏
i′∈B̄

(1− pi′,zm′
j′

)] · [1− α].

(14)

Then, according to (12), we can easily obtain (10).

Case 2 (If σzm′
j′

(B̄∪{i}) = ηzm′
j′

and σzm′
j′

(Ā∪{i}) < ηzm′
j′

):
In this case, we have

σzm′
j′

(Ā ∪ {i})− σzm′
j′

(Ā)

= [1−
∏
i′∈Ā

(1− pi′,zm′
j′

) · α]− [1−
∏
i′∈Ā

(1− pi′,zm′
j′

)]

= [
∏
i′∈Ā

(1− pi′,zm′
j′

)] · [1− α],

(15)

and

σzm′
j′

(B̄ ∪ {i})− σzm′
j′

(B̄)

= ηzm′
j′
− [1−

∏
i′∈B̄

(1− pi′,zm′
j′

)]

≤ [1−
∏
i′∈B̄

(1− pi′,zm′
j′

) · α]− [1−
∏
i′∈B̄

(1− pi′,zm′
j′

)].

(16)

Similar to Case 1, this obviously indicates (10).

Case 3 (If σzm′
j′

(B̄∪{i}) = ηzm′
j′

and σzm′
j′

(Ā∪{i}) = ηzm′
j′

):

In this case, we have

σzm′
j′

(Ā ∪ {i})− σzm′
j′

(Ā)

= ηzm′
j′
− [1−

∏
i′∈Ā

(1− pi′,zm′
j′

)], (17)

and

σzm′
j′

(B̄ ∪ {i})− σzm′
j′

(B̄)

= ηzm′
j′
− [1−

∏
i′∈B̄

(1− pi′,zm′
j′

)]. (18)

Then, according to (11), we can also obtain (10).
All these together complete the proof.

B. Performance of JSACS

Based on the shown properties of σ(H) (i.e., monotonicity
and submodularity), we can theoretically analyze the worst-
case performance of JSACS in terms of the approximation
ratio. Besides, the computational complexity of JSACS is also
analyzed. Note that, for notation simplicity, in the following,
let η =

∑
zmj ∈Z

ηzmj .
Lemma 3: In JSACS, at the beginning of any iteration τ ,

there must be a sensor i ∈ N can\H(τ − 1) which satisfies

σ(H(τ − 1) ∪ {i})− σ(H(τ − 1))

c̄(i)
≥ ητ−1

E∗total(H∗,L∗H∗ψ )
,

(19)
where c̄(i) = Etotal(H(τ − 1) ∪ {i},LHψ(τ−1)∪h) −
Etotal(H(τ−1),LHψ(τ−1)) indicates the energy consumption
brought by adding sensor i into H(τ−1), and ητ−1 depicts the
shortfall in the total QoM requirement after τ − 1 iterations,
which can be computed as

ητ−1 = η − σ(H(τ − 1)). (20)

Besides, E∗total(H∗,L∗H∗ψ ) is the minimum energy consump-
tion, where H∗ and L∗H∗ψ denote the theoretically optimal
selected sensor set and the corresponding optimal charging
route computing by our proposed RL based MCV charging
scheduling algorithm, respectively.

Proof: Let H∗(τ−1) = H∗−H(τ−1), and H∗(τ−1) =
{y1, . . . , yr}, where r is the amount of sensors in H∗(τ − 1).
We start the proof by a hypothesis: suppose that for any sensor
i ∈ N can\H(τ − 1),

σ(H(τ − 1) ∪ {i})− σ(H(τ − 1))

c̄(i)
<

ητ−1

E∗total(H∗,L∗H∗ψ )
.

(21)
Consider adding sensors in H∗(τ − 1) to H(τ − 1) one

by one. At any step, r′ < r, we have by submodularity
of σ(H) that σ(H(τ − 1) ∪ {y1, . . . , yr′}) − σ(H(τ − 1) ∪
{y1, . . . , yr′−1}) ≤ σ(H(τ − 1) ∪ {yr′}) − σ(H(τ − 1)).
Additionally, according to the hypothesis (21), we have
σ(H(τ−1)∪{y1, . . . , yr′})−σ(H(τ−1)∪{y1, . . . , yr′−1}) ≤
σ(H(τ −1)∪{yr′})−σ(H(τ −1)) < c̄(yr′ ) ·

ητ−1

E∗total(H∗,L
∗
H∗
ψ

) .

Adding all sensors from H∗(τ − 1) into H(τ − 1), this yields
σ(H(τ − 1)∪ {y1, . . . yr})− σ(H(τ − 1)) ≤ ητ−1

E∗total(H∗,L
∗
H∗
ψ

) ·

(c̄(y1)+ · · ·+ c̄(yr)) resulting in σ(H(τ −1)∪{y1, . . . yr}) <
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σ(H(τ − 1)) + ητ−1

E∗total(H∗,L
∗
H∗
ψ

) ·
∑

1≤h≤r c̄(yh) ≤ η which is

contradicted with the fact that σ(H(τ − 1)∪{y1, . . . yr}) ≥ η
in reality.

In conclusion, since the hypothesis does not hold, there must
exist at least one sensor i ∈ N can\H(τ − 1) which satisfies

σ(H(τ − 1) ∪ {i})− σ(H(τ − 1))

c̄(i)
≥ ητ−1

E∗total(H∗,L∗H∗ψ )
.

This completes the proof.
Theorem 2: Given a candidate sensor set N can with a cost

function Etotal(H,LHψ ). Let ε > 0 be any shortfall and

σ(H(l)) ≥ η − ε. Then, we must have
Etotal(H(l),LHψ(l))

E∗total(H∗,L
∗
H∗
ψ

) <

(1 + ln(η/ε)).
Proof: We add sensor i ∈ N can\H(τ − 1) which pro-

vides the maximum marginal product into H(τ−1) according
to JSACS at iteration τ . Then, following Lemma 3, we have

σ(H(τ − 1) ∪ {i})− σ(H(τ − 1))

c̄τ
≥ ητ−1

E∗total(H∗,L∗H∗ψ )
,

(22)
where c̄τ is the energy consumption introduced by adding the
selected sensor i within iteration τ . Recalling from (20), we
have

σ(H(τ − 1) ∪ {i}) = η − ητ , (23)

and
σ(H(τ − 1)) = η − ητ−1. (24)

Substituting (23) and (24) into (22), we have

ητ ≤ ητ−1 · (1−
c̄τ

E∗total(H∗,L∗H∗ψ )
). (25)

By applying the well known inequality (1+ω) ≤ eω , ∀ω ∈
R, we can further convert inequality (25) to

ητ ≤ e
−c̄τ

E∗
total

(H∗,L∗H∗
ψ

)

· ητ−1, (26)

which by expanding yields

ητ ≤ e

−Etotal(H(τ),LHψ(τ))

E∗
total

(H∗,L∗H∗
ψ

)

· η. (27)

Assume that Algorithm 2 (JSACS) takes l iterations to
achieve σ(H(l)) ≥ η − ε such that

σ(H(l − 1)) < η − ε, (28)

Then, according to (20) and (28), we have

ηl−1 > ε. (29)

Combining inequalities (27) and (29) yields

η · e
−
Etotal(H(l−1),LHψ(l−1))

E∗
total

(H∗,L∗H∗
ψ

)

> ε, (30)

which implies that

Etotal(H(l − 1),LHψ(l−1)) < E∗total(H∗,L∗H∗ψ ) · ln(η/ε).

(31)
Besides, at any iteration, we always have σ(H(τ))−σ(H(τ−
1)) ≤ ητ−1. Thus, we can obtain c̄τ ≤ E∗total(H∗,L∗H∗ψ )

TABLE II
MAIN SIMULATION PARAMETERS.

Parameter Value
Area dimensions 40 m × 40 m
Task types j [0,1,2,3]
Number of tasks M 100 (randomly chosen over [0,1,2,3])
QoM requirement ηzmj 0.5 ∼ 1.0
Time duration of monitoring period T 2 hours
Sensor types [0,1,2,3]
Number of sensors N 1000 (number of each type: 250)
Sensing radius Ri randomly chosen over [2,4,6,8] m
Energy capacity Ecapacityi 10.8 kJ
Energy consumption rate Econsumei 0.5 J/s
Minimum energy Emini 250 J
Initial energy Einitiali 3000 ∼ 4000 J
Intensity coefficient αi 0.01 ∼ 0.05
Charging rate δ 30 W
Velocity v 5 m/s
Traveling energy consumption γ 50 J/m
Energy capacity of MCV EMCV 200 kJ
Learning rate of Actor NN 5e-4
Learning rate of Critic NN 5e-4
Batch size 200
Size of training set 120000
Size of validation set 1000
Size of test set 1000

according to inequality (22), and we can transform it to

Etotal(H(l),LHψ(l)) ≤ Etotal(H(l − 1),LHψ(l−1)) + E∗total(H∗,L∗H∗ψ ).
(32)

Furthermore, combining inequalities (31) and (32) gives

Etotal(H(l),LHψ(l))

E∗total(H∗,L∗H∗ψ )
< (1 + ln(η/ε)). (33)

This completes the proof.
Corollary 2: By applying Algorithm 2 (JSACS), the

approximation ratio of the solution can be derived as,
Etotal(H(T ),LHψ(T ))

E∗total(H∗,L
∗
H∗
ψ

) < (1 + ln(η/ε)), where T is the last

iteration of Algorithm 2 (JSACS).
Theorem 3: The computational complexity of the proposed

scheme, i.e., JSACS, is bounded by O(|N can|2), where |N can|
is the cardinality of the candidate sensor set.

Proof: From the proposed Algorithm 2, we can observe
that the number of the overall iterations is bounded by |N can|.
Moreover, within each iteration, it takes at most O(|N can|)
iterations to find a sensor i ∈ N can with the maximum
marginal product from N can. Thus, the total time complexity
is bounded by O(|N can|) · |N can| = O(|N can|2).

VI. SIMULATION RESULTS

In this section, simulations are conducted to numerically
evaluate the performance of the proposed JSACS. Table II lists
the values of main simulation parameters. Similar settings have
also been employed in the literature [47]–[49]. Besides, the
structure of neural networks (including actor and critic NNs)
and hyper-parameter settings for the proposed learning based
algorithm is presented in Table III. Note that some parameters
may vary according to different evaluation scenarios.

For comparison purpose, we introduce a greedy algorithm
(GRE) and an existing algorithm called reward-cost ratio



12

TABLE III
PARAMETER SETTINGS OF THE PROPOSED RL MODEL

Actor Neural network (Pointer Network)
Encoder: 1D-Conv (input size = Dinput, hidden size = 128, kernel size = 1, stride = 1)
Decoder: GRU (hidden size = 128, number of layer = 1)

Attention (No hyper parameters)
Critic Neural Network

1D-Conv (input size = Dinput, hidden size = 128, kernel size = 1, stride = 1)
1D-Conv (input size = 128, hidden size = 20, kernel size = 1, stride = 1)
1D-Conv (input size = 20, hidden size = 20, kernel size = 1, stride = 1)
1D-Conv (input size = 20, hidden size = 1, kernel size = 1, stride = 1)
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Fig. 6. Comparison of energy consumption of the entire system w.r.t. number
of tasks.
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Fig. 7. Comparison of energy utilization efficiency of the MCV w.r.t. number
of tasks.

algorithm (RC-ratio) [30] as benchmarks. GRE greedily selects
sensors into H that have maximum detection probability until
all tasks’ QoM are satisfied, and then applies the earliest
deadline first policy (EDF) [50] to derive the charging route
of the MCV for Hψ . RC-ratio selects sensors into H for
achieving the marginal product maximization (which is similar
to our proposed JSACS) while its MCV’s charging route is
determined by EDF.

Fig. 6 demonstrates the superiority of the proposed JSACS
in terms of the system energy consumption with respect to the
number of tasks. It is shown that, the total energy consumption
increases monotonically with the number of tasks. This is
because with the growth of the number of tasks, more sensors
need to be activated, leading to more energy consumption.
Meanwhile, with more sensors being activated, a growing
number of them need to be recharged, resulting in the increase
of the MCV’s traveling energy consumption. Additionally, it
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Fig. 8. Comparison of energy consumption of the entire system w.r.t. network
size.
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Fig. 9. Comparison of energy utilization efficiency of the MCV w.r.t. network
size.
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Fig. 10. Comparison of traveling energy of the MCV w.r.t. network size.

can be observed that the proposed JSACS outperforms both
GRE and RC-ratio. The reason is that GRE iteratively select a
sensor with the highest detection probability to activate while
ignoring the impact on the total energy consumption. RC-
ratio outperforms GRE because it selects a sensor with the
largest marginal product to activate in each iteration, balancing
the trade off of maximizing the detection probability and
minimizing the energy consumption. The proposed JSACS
achieves the best performance because it does not only select
a sensor with the largest marginal product in each iteration,
but also determines the charging route of the MCV by a well
trained reinforcement learning model instead of the EDF.
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Fig. 11. Comparison of energy consumption of the entire system w.r.t. decay
factor.
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Fig. 12. Comparison of energy utilization efficiency of the MCV w.r.t. initial
energy of sensors.

Fig. 7 compares the energy utilization efficiency of GRE,
RC-ratio and the proposed JSACS with the increase of the
number of tasks. The energy utilization efficiency refers to
the proportion of the energy for recharging sensors to total
MCV energy consumption. It is shown that the proposed
JSACS performs better than GRE and RC-ratio. The reason is
that the proposed JSACS considers the two-layer optimization
simultaneously rather than in greedy or independent ways. In
addition, the objective of the trained reinforcement learning
model is to minimize the traveling energy consumption of the
MCV while meeting the charging deadlines of all activated
sensors. On the contrary, the EDF applied in GRE and RC-
ratio does not consider the traveling length of the MCV, and
it simply recharges sensors in a timely manner. Therefore, the
proposed JSACS can prompt the MCV to utilize more energy
for task execution to increase the QoM of tasks, instead of
wasting the energy on traveling.

Fig. 8 shows that the energy consumption of the entire
system for all these three schemes increases with the network
size. Besides, the energy utilization efficiency of the MCV
has a downward trend despite that the proposed JSACS is
always superior to GRE and RC-ratio, as shown in Fig. 9.
The reason is that the larger network size makes the sensor
deployment more sparse, leading to more energy consumption
on traveling, as later shown in Fig. 10. In addition, a larger
network size also makes the distance between the sensor and

its monitoring tasks larger, and the detection probabilities of
sensors decrease, so that more sensors need to be activated to
execute tasks, inducing more energy consumption on sensors.
These imply that the proposed JSACS is more suitable to
be applied in ultra-dense network scenarios, which is also of
great importance in the future IIoT. Intuitively, the proposed
JSACS outperforms both GRE and RC-ratio, benefiting from
integrating reinforcement learning and marginal product based
approximation algorithms to jointly solve the sensor activation
and charging scheduling problem.

Fig. 11 illustrates the performance of three schemes in terms
of the system energy consumption with respect to the decay
factor. It can be observed that the total energy consumption
increases with the decay factor. This is because, when QoM
requirements of all tasks are fixed, a larger decay factor results
in lower sensors’ detection probabilities, so that more sensors
are required to be activated for executing tasks. Besides, Fig.
12 shows that as the initial energy of sensors increases, the
energy utilization efficiency of MCV decreases. The reason is
that when sensors have more initial energies, their demands
for recharging become less imperative. Moreover, Fig. 11
and 12 demonstrate that the proposed JSACS outperforms all
benchmark schemes, and the explanations for this are similar
to those for Fig. 6 and 7.

VII. CONCLUSION AND FUTURE WORK

In this paper, a joint optimization of sensor activation and
mobile charging scheduling for the WRSN-based IIoT system
has been studied. By considering the objective of minimizing
the total energy consumption of the entire system subject to
tasks’ QoM requirements, sensor charging deadlines and the
energy capacity of the MCV, a novel scheme, called JSACS,
is proposed integrating reinforcement learning and marginal
product based approximation algorithms. Theoretical analyses
show that, JSACS is not only computationally efficient but also
theoretically bounded with a guaranteed performance in terms
of the approximation ratio. Simulation results further demon-
strate that, compared to counterparts, the proposed JSACS is
superior in decreasing the system energy consumption and
improving the energy utilization efficiency of the MCV.

In the future work, we will further investigate a similar
problem in the scenario with a long-term objective over mul-
tiple time frames. Obviously, in this case, the interdependence
between any two consecutive time frames has to be carefully
studied (e.g., a sensor’s remaining energy of the current time
frame becomes this sensor’s initial energy at the next time
frame). This motivates us to derive a new objective function for
characterizing the long-term energy consumption minimization
and develop an online algorithm for addressing the system
dynamics caused by the state variations among different time
frames.
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