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Abstract—In this paper, an energy efficient scheduling problem
for multiple unmanned aerial vehicle (UAV) assisted mobile edge
computing (MEC) is studied. In the considered model, UAVs act
as mobile edge servers to provide computing services to end-
users with task offloading requests. Unlike existing works, we
allow UAVs to determine not only their trajectories but also the
decisions of whether returning to the depot for replenishing en-
ergies and updating application placements (due to their limited
batteries and storage capacities). With the aim of maximizing
the long-term energy efficiency of all UAVs, i.e., the total amount
of offloaded tasks computed by all UAVs over their total energy
consumption, a joint optimization of UAVs’ trajectory planning,
energy renewal and application placement is formulated. Taking
into account the underlying cooperation and competition among
intelligent UAVs, we reformulate such optimization problem as
three coupled multi-agent stochastic games. Since the prior
environment information is unavailable to UAVs, we propose
a novel triple learner based reinforcement learning (TLRL)
approach, integrating a trajectory learner, an energy learner
and an application learner, for reaching equilibriums. Moreover,
we analyze the convergence and the complexity of the proposed
solution. Simulations are conducted to evaluate the performance
of the proposed TLRL approach, and demonstrate its superiority
over counterparts.

Index Terms—Mobile edge computing, UAV, long-term opti-
mization, stochastic game, reinforcement learning

I. INTRODUCTION

REcently, the multi-unmanned aerial vehicle (UAV) as-
sisted mobile edge computing (MEC) [1]–[4] has at-

tracted a myriad of attentions due to its high-flexibility in
providing MEC services for end-users (e.g., IoT devices).
Particularly, UAVs with computing resources can dynamically
adjust their positions to get close to end-users or fly to areas
that cannot be covered by fixed MEC infrastructures [5]–
[7]. Thus, compared to the traditional MEC, the multi-UAV
assisted MEC can provide better quality of service (QoS) for
end-users [8], [9].

Although the multi-UAV assisted MEC is envisioned as
a light-weight but highly efficient paradigm for alleviating
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computation burdens on end-users, it also suffers from several
inherent restrictions. For instance, computing tasks offloaded
from different end-users are required to be processed by spe-
cific service applications, while the limited storage capacities
of UAVs impede their abilities to store all applications. Ad-
ditionally, the limited energy capacities of UAVs also hinders
the implementation of this paradigm in providing the long-
term MEC services. Besides, the amount of IoT devices served
by each UAV may be relatively small due to the limitations
of each UAV’s coverage. Recent research efforts in this area
include trajectory optimization [10], [11], service caching [12],
UAV deployment [13], [14], etc. Nevertheless, there are still
some critical issues, especially how UAVs’ installed appli-
cations should be updated (under severely restricted wireless
backhauls) and how UAVs’ energy replenishment [15] should
be jointly scheduled, which are imperative but have not yet
been well investigated.

i) The limited energy capacities and coverage restrictions
of UAVs make it challenging to provide the long-term
MEC services for massive IoT devices simultaneously.
This prompts us to appropriately schedule the trajectories
of multiple UAVs (with different application placements)
to collaboratively provide MEC services for IoT devices
with different positions and task requests.

ii) Each IoT device’s task is required to be supported by a
specific application. However, due to the limited storage
capacities, UAVs cannot store all required applications for
every task. Additionally, UAVs may consume extensive
energy when they wirelessly download new huge size
applications from remote servers. Moreover, such long-
range wireless connectivity may not always be stable.
This motivates us to devise a more effective and efficient
approach to dynamically update the application place-
ment for multi-UAV assisted MEC.

iii) In multi-UAV assisted MEC, it is required to consider
not only the trajectory planning and application place-
ment, but also the energy renewal issue, which is widely
recognized in the literature [16]–[21]. Therefore, a joint
optimization of these three kinds of decisions considering
three optimization problems is indispensable for high
energy-efficient multi-UAV assisted MEC.

In this paper, we study a joint optimization of trajectory
planning, energy renewal, and application placement for multi-
UAV assisted MEC to maximize the long-term energy effi-
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ciency of all UAVs, i.e., the total amount of offloaded tasks
computed by all UAVs over their total energy consumption,
when providing MEC services. Specifically, in the considered
system, each UAV working over a target region has to decide
its actions after finishing the last one, i.e., a flight direction
for serving IoT devices in other areas or returning back to the
depot for replenishing its energy and simultaneously updating
its application placement (through wired connections), with
the aim of maximizing the long-term energy efficiency of
all UAVs. Taking these facts into account in resolving the
optimization problem for the multi-UAV assisted MEC is
challenging due to the following reasons. Since UAVs are
intelligent, we can allow each of them to make its own de-
cisions. However, with the system objective of improving the
total energy efficiency of all UAVs, each UAV has to adjust its
trajectory planning, energy renewal and application placement
strategies with inherent cooperations with other UAVs. Mean-
while, allowing UAVs to make decisions by themselves may
also lead to competitions: i) each UAV may selfishly move to
a grid with intensive computation requirements, resulting in
potential collisions among UAVs; ii) each UAV may prefer
to serve more computation offloading requests for its own
interests while do not return to the depot for replenishing
energy until its battery is exhausted regardless of the others;
and iii) each UAV may tend to place applications that are
most popular while ignoring the QoS requirements of IoT
devices and harming the system performance. Additionally,
we consider that the future environment information (e.g.,
positions and task requirements of IoT devices) is unavailable
to UAVs, so that an online optimization is required. To
this end, we reformulate the joint optimization problem as
three complicated multi-agent stochastic games, i.e., trajec-
tory planning stochastic game (TPSG), application planning
stochastic game (APSG) and energy renewal stochastic game
(ERSG), for not only comprehensively describing all strategic
interactions among UAVs but also facilitating the solution with
a refined problem structure. While these three multi-agent
stochastic games are coupled tightly, which are still difficult
to be solved directly.

In this paper, we design a novel triple-learner based re-
inforcement learning (TLRL) approach for the multi-UAV
assisted MEC, aiming to produce the long-term optimal energy
efficient decisions for all UAVs. To characterize all aforemen-
tioned features, the stochastic games of trajectory planning,
application placement and energy renewal are formulated
respectively. By analyzing the characteristics and properties
of the problem, a novel TLRL approach is proposed to obtain
the corresponding equilibriums of these games. Consequently,
the optimal trajectory planning, application placement strategy
and energy renewal schedule for multiple UAVs can be derived
accordingly.

For clarity, the main contributions of this paper are summa-
rized in the following.
• A joint optimization of trajectory planning, energy re-

newal and application placement for multi-UAV assisted
MEC is formulated, where the objective is to maximize
the energy efficiency of all UAVs in the long term.

• Observing the underlying cooperation and competition

among UAVs, the optimization problem is reformulated
as three coupled multi-agent stochastic games, i.e., TPSG,
ERSG and APSG.

• We propose a novel approach, called TLRL, to obtain
the equilibriums of the three coupled stochastic games
efficiently. Moreover, the convergence of TLRL approach
is proved and the complexity of TLRL approach is also
analyzed.

• Extensive simulations are conducted to show the superi-
ority of the proposed TLRL approach over counterparts.

The rest of this paper is organized as follows: Section II
briefly reviews the related work and emphasizes the novelties
of this paper. Section III introduces the system model and
problem formulation of the considered multi-UAV assisted
MEC. In Section IV, a problem reformulation based on multi-
agent stochastic game is constructed. Section V proposes
the TLRL approach to optimize trajectory planning, energy
renewal and application placement for multiple UAVs. Sim-
ulation results are provided in Section VI, followed by the
conclusion in Section VII.

II. RELATED WORK

Due to the rapid development of information and commu-
nication technologies, UAVs have been widely employed to
serve as edge servers for IoT devices in MEC system, and
it has attracted a myriad of attentions recently. For instance,
Zhang et al. in [22] used UAVs as computing nodes and relay
nodes to reduce average user delay. Liao et al. in [23] presented
a new UAV-assisted edge computing framework to reduce
the computation offloading pressure of users and ground base
station. Liu et al. in [24] proposed a new online UAV edge
server schedule scheme, which can be used to schedule tasks
to appropriate hovering positions by geographically merging
tasks into several hot spots. Yu et al. in [25] proposed
an innovative MEC system for UAVs involving interaction
between IoT devices, UAVs and edge cloud. However, in most
of these works, dynamic application placement in multi-UAV
assisted MEC was neglected.

The long-term energy efficiency of UAVs is considered as
an objective for multi-UAV assisted MEC in many works, with
some of them focusing on trajectory planning, energy renewal
or application placement. In terms of trajectory planning,
Wang et al. in [26] proposed a multi-agent deep reinforcement
learning based trajectory control algorithm for managing the
trajectory of each UAV to jointly optimize the geographical
fairness among all the user equipments (UEs), the fairness
of each UAV’s UE-load and the overall energy consumption.
Besides, Xu et al. in [27] optimized three-dimensional (3D)
UAV trajectories to minimize the average weighted sum energy
consumption. In terms of the energy renewal, Chen et al. in
[28] developed a mixed-integer programming (MIP) model
and an equivalent mixed-integer linear programming (MILP)
model for UAV-enabled MEC to minimize both the total
energy consumption and service time. Furthermore, Wang et
al. in [29] jointly designed UAVs’ path planning over users’
locations and charging stations for providing high-quality
MEC services. In terms of the application placement, as far
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as we know, there are only some existing works on content
dissemination [30]–[32], [33], while few works mentioned
dynamic application placement on UAVs. Moreover, the long-
term energy efficiency optimization of UAVs often involves
multiple decision variables, which can be formulated as a joint
optimization problem. However, no one has considered the
joint optimization of trajectory planning, energy renewal and
application placement simultaneously.

For addressing the system uncertainties, the stochastic game
has been widely employed in the scheduling problem of
multi-UAV assisted MEC. Seid et al. in [34] described the
problem as an extension of Markov decision process (MDP)
for stochastic games to minimize computing costs of energy
and delay in the long-term. Ning et al. in [35] decomposed
the problem of system computing cost minimization under
dynamic environment by formulating two stochastic games
for multi-user computing offload and edge server deployment
respectively. Chen et al. in [12] represented the competitive
interaction of scheduling local and remote task computing as
a stochastic game between mobile users. However, these works
commonly considered one stochastic game for all, which may
not be efficient when decisions are multi-dimensional and
tightly coupled.

In summary, unlike all existing works, this paper delves into
the following issues specified to multi-UAV assisted MEC.
• Instead of assuming that UAVs’ application deployment

are fixed or almost never updated, we study a novel model
such that UAVs are allowed to dynamically fly back to
the depot for updating their application placement.

• We consider a joint optimization problem of trajectory
planning, energy renewal and application placement for
multi-UAV assisted MEC, which has never been dis-
cussed in the literature

• We first reformulate the joint optimization problem as
three coupled multi-agent stochastic games, and then
propose a novel triple-learner based approach which can
efficiently reach the corresponding equilibriums.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model of the considered multi-
UAV assisted MEC is first described. Then, the task offloading
model, UAV computation model, UAV propulsion energy
model and UAV energy renewing model are formulated in
detail. All important notations are listed in Table I.

A. Overview

Consider a multi-UAV assisted MEC deployed in a target
region, as illustrated in Fig. 1, consisting of a group of
UAVs (acting as mobile edge servers) M with cardinality
of |M| = M and a set of randomly scattered IoT devices
N with cardinality of |N | = N . There is a depot located
at the edge of the target region, which can be used by
UAVs for both energy replenishment and updating application
placement through wired connections. A time-slotted operation
framework is studied, in which we define t ∈ {1, 2, ..., T}
as the index of time slot. We consider that all IoT devices
randomly generate their offloading tasks in each time slot, and

TABLE I
IMPORTANT NOTATIONS IN THIS PAPER

Symbol Meaning
M Set of UAVs
N Set of IoT devices
U Positions set of UAVs
I Positions set of IoT devices
T The amount of time slot
m Index of M
n Index of N
t Index of time slot
q Length of the squared grid
V Velocity of each UAV
C The amount of the task types
c Index of the task types
xm, ym X-axis and the Y -axis of UAV m
xn, yn X-axis and the Y -axis of IoT device n
dm,n Distance between IoT device n and UAV m
H Flight altitude of each UAV
Gm Set of IoT devices served by UAV m
a, b Environmental constants
f , clight Carrier frequency and the speed of light
ηLoS , ηNLoS Losses corresponding to the LoS and non-LoS
δ LoS probability
γ SINR of the channel
µ Instantaneous achievable rate
w Applications placed in UAVs
v Task requests of IoT devices
fU
m Computing capacity of UAV m

ptrann Transmission power of IoT device n
ϖ Power spectral density of noise
λm,n Path loss between IoT device n ∈ Gm and UAV m
ε Indicator of UAVs renewing energy
B Channel bandwidth of IoT device n to UAV m
Dn Size of each task offloaded by IoT device n
ξ Effective capacitance coefficient of each UAV
P pro
m Propulsion power of UAV m

thover Hovering time of each UAV
trenew
m Renewing time of UAV m

toffm,n Offloading time of IoT devices n to UAV m
tcomp
m Computing time of UAV m
Taskcomp

m Data size of tasks computed by UAV m
Sm Maximum amount of applications of UAV m
Etotal

m Energy capacity of UAV m.
Ecomp

m Energy consumption of tasks computed by UAV m
Epro

m Propulsion energy consumption of UAV m
Ereturn

m Energy consumption of UAV m returning to the depot
Eremain

m Remaining energy of UAV m
Eeffi Energy efficiency of all UAVs

the type of each task is also generated randomly. The target
region is equally divided into small squared grids with the
side length of q. Similar to [36], we assume that the downlink
transmission range of each UAV is

√
2
2 q, which totally covers

a grid (for feeding back computation outcomes). At any time
slot, each grid can only be covered by one UAV serving IoT
devices to avoid collisions. Each IoT device is associated
with a certain UAV hovering located at the same grid for
offloading tasks through wireless communications1, while each

1In the future, we will further consider two scenarios below if this setting
is relaxed. 1) Each IoT device is associated with a UAV located at the other
grid, then its task results may be transmitted back through several relay nodes.
2) Each IoT device is associated with multiple UAVs which are located at
the same grid, then the altitudes of these UAVs may also need to be carefully
optimized to avoid collisions.
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Fig. 1. An illustration of the considered multi-UAV assisted MEC.

UAV could provide multiple IoT devices with MEC service
within its downlink transmission range. Since all IoT devices
are required to offload their tasks to their associated UAVs
via uplink communications using the same frequency band B,
each IoT device will interfere other UAVs when the IoT device
is offloading a task to its associated UAV. The set of IoT device
served by UAV m can be denoted as Gm. At the beginning
of each time slot t, every UAV decides whether to return
to the depot according to the state information of all UAVs.
Specifically, if a UAV does not return to the depot, it will
independently select a direction among forward, backward,
left and right, and move to the center of another adjacent
grid with a constant velocity V . Then the UAV hovers over
this grid within the slot to receive and compute tasks from
IoT devices. Note that all tasks are considered to be delay-
sensitive [37], and each UAV only receives tasks which can
be computed by applications that has already been placed in
the UAV. Additionally, since the size of results is much smaller
than offloaded tasks size, the delay and energy consumption
for results sending back from a UAV to IoT devices are omitted
in this paper. In contrast, if a UAV chooses to return to the
depot, it will renew energy in the depot. Besides, the UAV will
also update its application placement in the depot for better
serving IoT devices. After these two processes (i.e., renewing
energy and updating application placement), the UAV will fly
back to the original region it served.

B. Offloading Model

In this subsection, we study the offloading model of IoT
devices in the considered multi-UAV assisted MEC. Let
Um(t) = (xUm, y

U
m) and In = (xIn, y

I
n) denote the position

of UAV m and the position of IoT device n in horizontal
coordinates at time slot t, respectively. Then, The distance
between IoT device n and UAV m at time slot t can be
mathematically expressed as

dm,n(t) =
√
(xUm − xIn)

2 + (yUm − yIn)
2 +H2, (1)

where H denotes a fixed flight altitude of each UAV. Following
the literature [38], the line-of-sight (LoS) probability between
IoT device n ∈ Gm and UAV m ∈ M at time slot t is given
by

δm,n(t) = a · exp(−b(arctan(H/dm,n(t))− a)), (2)

where a and b are constant values depending on the environ-
ment. Then, the path loss between IoT device n ∈ Gm and
UAV m ∈ M and at time slot t can be expressed as

λm,n(t) = 20log(
√
H2 + dm,n(t)2)

+δm,n(t)(ηLoS − ηNLoS)
+20log[(4πf)/clight] + ηNLoS ,

(3)

where f and clight signify the carrier frequency and the
speed of light, respectively; ηLoS and ηNLoS are the losses
corresponding to the LoS and non-LoS, respectively.

Since a common frequency band is reused among all links,
the signal-to-interference-plus-noise ratio (SINR) at UAV m ∈
M with regard to the uplink communication of IoT device
n ∈ Gm at time slot t can be written as

γm,n(t) =

vn(t)wm(t)⊤ptran
n 10

−λm,n(t)
10∑N

i=1\{n} vn(t)wm(t)⊤ptran
i 10

−λm,n(t)
10 +ϖ

,
(4)

where ptrann is the transmission power of IoT device n, and ϖ
indicates the power spectral density (PSD) of noise. Note that,
in this work, we assume that all tasks are independent with
each other, while we may follow [39] to extend the model for
accommodating a more complicated scenario with task depen-
dency. At time slot t, we consider that IoT device n ∈ Gm can
offload no more than one task to its associated UAV m. Let
vn(t) = {vn,1(t), vn,2(t), ..., vn,C(t)}, where c ∈ {1, 2, ..., C}
is the index of the type of task, and vn,c(t) = 1 signifies that
IoT device n requests to offload task c, and vn,c(t) = 0,
otherwise. Meanwhile, the applications placed in UAV m
can be defined as wm(t) = {wm,1(t), wm,2(t), ..., wm,C(t)},
where wm,c(t) ∈ {0, 1} signifies whether UAV m places the
application or not, and wm,c(t) = 1 means that UAV m places
the application which can compute task c, and wm,c(t) = 0,
otherwise. This implies that the type of each task can be only
computed by one type of application.

Following the path loss model [38], the instantaneous
achievable rate of IoT device n offloading tasks to UAV m
at time slot t can be expressed as

µm,n(t) = Blog2(1 + γm,n(t)). (5)

Note that, any UAV m ∈ M can only process the types of
tasks fitting the types of its placed applications. Based on
these, the time of IoT device n ∈ Gm offloading to UAV m
at time slot t can be written as

toffm,n(t) =
vn(t)wm(t)⊤Dn

µm,n(t)
, (6)

where Dn is the size of each task offloaded by IoT device n.
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Fig. 2. An illustration of task offloading and computation protocol for UAV.

C. UAV Computation Model

As shown in Fig. 2, we consider a task offloading and
computation protocol for each UAV m as follows. During
UAV m providing MEC service for IoT devices n ∈ Gm, the
duration of each time slot t can be decomposed into the UAV
moving time q

V and the UAV hovering time thover. Within
each time slot t, we ask UAV m ∈ M hovers over the center
of a certain grid to provide MEC services with time duration
thover, and toffm,n(t) < thover < |t|,∀n ∈ Gm,m ∈ M,
which means that thover is large enough for UAV m to receive
any task offloaded by any IoT device and is shorter than the
duration of a time slot. Then, the time of tasks computed by
UAV m ∈ M can be expressed as

tcomp
m (t) = min{

∑
n∈Gm

vn(t)wm(t)⊤Dn

fU
m
,

thover −min{toffm,n(t)}n∈Gm
},

(7)

where fUm is the computing capacity of UAV m (in the number
of CPU cycles per second), and thover −min{toffm,n(t)}n∈Gm

indicates that UAV m starts edge computing since the first
task is totally received. The size of tasks computed by UAV
m can be written as

Taskcomp
m (t) = tcomp

m (t)fUm, (8)

Correspondingly, the energy consumption of UAV m ∈ M for
computing tasks at time slot t is calculated as

Ecomp
m (t) = ξ(fUm)2Taskcomp

m (t), (9)

where ξ denotes effective capacitance coefficient of each UAV.

D. UAV Propulsion Energy Model

In this paper, we consider a rotary-wing UAV propulsion
power model which depends on the velocity V [40]. For
rotary-wing UAVs, the propulsion power of UAV m is

P pro
m (V ) =

1
2 (

Sf

RsA
)ρRsAV

3 + (φe

8 ρRsAΩ
3
eR

3
e)(1 +

3V 2

(ΩeRe)3
)

+((1 + κp)
(gMUAV )

3
2√

2ρA
)(
√
1 + V 4

4(
√

gMUAV
2ρA )2

− V 2

2(
√

gMUAV
2ρA )

)
1
2 ,

(10)
where the descriptions of parameters in (10) are listed in Table
II, and their settings are accordingly [40]. Then, the propulsion
energy consumption of UAV m can be expressed as Epro

m =
P pro
m (V ) q

V +P pro
m (0)thover, which indicates that Epro

m consists

of the horizontal moving energy and the hovering energy at
each time slot t.

E. UAV Energy and Application Placement Model

Let Etotal
m , Ereturn

m (t) and Eremain
m (t) be the energy capac-

ity of UAV m, the energy consumption of UAV m returning
to the depot and the remaining energy of UAV m at the end
of time slot t, respectively. Ereturn

m (t) can be written as

Ereturn
m (t) = P pro

m (V )
dreturnm (t)

V
, (11)

where dreturnm (t) indicates the distance between UAV m and
depot at time slot t. The energy consumption of UAVs consists
of computing energy, propulsion energy and returning energy.
If UAV m chooses to return to the depot, it will renew energy
to support continuous MEC service. Hence, the remaining
energy of UAV m at time slot t can be formulated as

Eremain
m (t) = Eremain

m (t− 1)− εm(t)(Epro
m + Ecomp

m (t))
−(1− εm(t))Ereturn

m (t)
(12)

where εm(t) ∈ {0, 1} stands for the decision that whether
UAV m ∈ M chooses to whether return to the depot at the
beginning of each time slot t, and εm(t) = 0 means that UAV
m decides to return to the depot at time slot t, and εm(t) = 1
otherwise. Since the energy renewal time is much longer than
the flight time between the original region and the depot, the
flight time is omitted. Additionally, to guarantee the QoS of
IoT devices, each type of application should be placed in at
least one UAV hovering over the target region at each time
slot t, i.e.,

M∑
m=1

wm,c(t)εm(t) ≥ 1,∀c ∈ C. (13)

After replenishing its energy and updating its application
placement, UAV m will fly back to the original region it was
located and continue to provide MEC services. Note that, the
total size of applications placed at UAV m ∈ M should be
smaller than its storage capacity, which can be written as

C∑
c=1

wm,c(t) ≤ Sm, (14)

where Sm indicates the maximum amount of applications
placed in UAV m.

F. Problem Formulation

We aim to solve the problem of joint optimization of multi-
ple UAVs’ trajectory planning, energy renewal and application
placement, with the aim of maximizing the energy efficiency
of all UAVs, i.e., the total amount of offloaded tasks computed
by all UAVs over their total energy consumption, which can
be mathematically expressed as

Eeffi(t) =

M∑
m=1

εm(t)Taskcomp
m (t)

|Eremain
m (t− 1)− Eremain

m (t)|
. (15)
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TABLE II
UAV PROPULSION ENERGY MODEL

Parameter Descriptions
φe Blade drag coefficient
Ωe Blade angular velocity
Re Rotor radius
ρ Air density
κp Induced power factor
Rs Rotor solidity
g Gravity acceleration
A Rotor disc area
MUAV UAV mass
Sf Fuselage equivalent flat plate area

Then, the joint optimization of multiple UAVs’ trajectory
planning, energy renewal and application placement can be
formulated as

[P1] : max
Um(t),wm(t),εm(t)

lim
T→+∞

1

T

T∑
t=1

Eeffi(t) (16)

s.t., (13), (14),
C∑

c=1

vn,c ≤ 1, (17)

εm(t) ∈ {0, 1},∀m ∈ M, (18)
wm,c(t) ∈ {0, 1},∀m ∈ M,∀c ∈ C, (19)

Eremain
m (0) = Etotal

m ,m ∈ M (20)

|Um(t)− Um(t− 1)|2εm(t) = q2,m ∈ M, (21)

(xUm(t)−xUm(t−1))(yUm(t)−yUm(t−1))κm(t)=0, (22)

|Um(t)− Um′(t)|2 ≥ q2,m′ ∈ M\{m}, (23)

where constraint (17) means that each IoT device requests
to offload at most one task at eash time slot; constraint (20)
indicates that the initial energy of each UAV equals its energy
capacity; constraint (21) and constraint (22) imply that each
UAV can only move to the center of adjacent grid if it does
not return to the depot; constraint (23) indicates that each grid
can only be covered by one UAV to avoid potential collisions.
In the following section, we will first analyze this optimization
problem, and then propose a novel approach to derive the
corresponding solution.

IV. PROBLEM REFORMULATION BASED ON MULTI-AGENT
STOCHASTIC GAME

In this section, we show how the optimization problem [P1]
can be reformulated based on multi-agent stochastic game.

A. Game Statement

Since UAVs are intelligent, to solve problem [P1], we can
allow each UAV to make its own decisions while regulate
the underlying cooperation and competition among them.
Specifically, UAVs are expected to cooperatively conduct the
trajectory planning, energy renewal and application placement
to maximize the energy efficiency of all UAVs while guar-
anteeing QoS of IoT devices. Meanwhile, allowing UAVs to
make decisions by themselves may also lead to competitions

as follows.
1) For trajectory planning, each UAV would maximize its en-
ergy efficiency by moving to a grid with intensive computation
requirements, which may result in collisions among UAVs.
2) For energy renewal, each UAV may prefer to serve more
computation offloading requests in maximizing its energy
efficiency while do not return to the depot for replenishing
energy until its battery is exhausted, causing constraint (13)
to collapse.
3) For application placement, each UAV tends to place ap-
plications that are requested most frequently to maximize its
own energy efficiency, while ignoring the QoS requirements
of IoT devices (making some of them starving).

Additionally, considering the uncertainty that the future en-
vironment information (e.g., task requirements of IoT devices)
is not available to UAVs, to this end, we reformulate the
joint optimization problem [P1] as three coupled multi-agent
stochastic games as follows.

B. Game Formulation

Firstly, we define the multi-agent stochastic game as a
tuple ⟨M,S,A,P,R⟩ [10] in view of the discussion above.
1) M indicates the set of agents.
2) S indicates the set of environment states. At time slot t,
the environment state is denoted as s(t).
3) A = {A1,A2, ...,AM} indicates the set of joint action,
where Am represents the set of individual actions of agent
m. The joint action at time slot t is denoted as a(t) ∈ A,
while the individual action of agent m is denoted as
am(t) ∈ Am. Hence, the joint action can be written as
a(t) = {a1(t), ..., aM (t)}.
4) P indicates the set of state transition probabilities.
Pss′(a(t)) signifies the state transition probability from state
s to s′ by taking the joint action a(t) ∈ A.
5) R = {R1, ...,RM} indicates the reward function, where
Rm(t) signifies the set of immediate reward of agent m at
time slot t.

As mentioned above, problem [P1] can be reformulated
as three coupled multi-agent stochastic games, namely,
TPSG ⟨M,STPSG,ATPSG,PTPSG,RTPSG⟩, ERSG
⟨M,SERSG,AERSG,PERSG,RERSG⟩ and APSG
⟨M,SAPSG,AAPSG,PAPSG,RAPSG⟩, Particularly, for
TPSG, each UAV m ∈ M will choose an action individually
based on the current environment states sTPSG(t) ∈ STPSG

at the beginning of each time slot t, and then form a
joint action aTPSG(t) ∈ ATPSG. After executing the joint
action, rewards will be obtained according to RTPSG, and
the environment states will turn to be next ones following
PTPSG. The descriptions of ERSG and APSG are similar to
TPSG, and are omitted here for conciseness.

Note that, TPSG, ERSG and APSG are inherently coupled.
To be more specific, the joint action of ERSG aERSG(t) ∈
AERSG at time slot t decides UAVs to whether return to
the depot for energy replenishment, and such decisions affect
the joint action of TPSG aTPSG(t) ∈ ATPSG or APSG
aAPSG(t) ∈ AAPSG at time slot t in selecting which
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direction to move or which applications to update. In turn,
the joint action of TPSG aTPSG(t) ∈ ATPSG at time slot
t affect the joint action of ERSG aERSG(t) ∈ AERSG

at the next time slot t + 1, because the remaining energy
of UAVs depends on UAV’ propulsion energy consumption
and the amount of tasks they processed at the time slot
t. Additionally, they also affect the joint action of APSG
aAPSG(t + t′) ∈ AAPSG in future time slots t + t′, t′ > 0,
because different trajectories lead to different histories of
providing MEC services, which influences UAV’ decisions in
updating which types of applications. Besides, the joint action
of APSG aAPSG(t+ t′) ∈ AAPSG at time slot t would affect
the joint action of TPSG aTPSG(t + t′) ∈ ATPSG at the
next time slot t + 1, because the trajectory planning has to
take into account the types of tasks that UAVs can process. In
the following subsection, we propose a novel approach, called
TLRL, to obtain equilibriums of these three coupled multi-
agent stochastic games.

V. TLRL APPROACH

It is worth noting that, the transitions of states and actions of
TPSG, ERSG, and APSG satisfy the Markov property because
all joint action, i.e., flight directions aTPSG(t), decisions of
whether returning to the depot a(t)ERSG, and decisions of
which applications to place a(t)APSG, at time slot t only
depend on the environment states at time slot t, i.e., sTPSG(t),
sERSG(t) and sAPSG(t), and thereby, in this paper, we char-
acterize each UAV’s strategic decision process in TPSG, ERSG
and APSG by three respective Markov decision processes
(MDPs).

MDP for each UAV in TPSG: With the aim of finding
the optimal trajectories for all UAVs, the individual decision
making problem for each UAV m ∈ M in TPSG can be
modelled as an MDP (STPSG,ATPSG

m ,RTPSG
m ,PTPSG).

1) Environment State for Each UAV in TPSG: The environ-
ment state sTPSG(t) ∈ STPSG for each UAV m ∈ M in
TPSG at time slot t consists of all UAVs’ positions Um(t),
m ∈ M and application placement wm(t), m ∈ M , which
can be expressed as sTPSG(t) = (Um(t),wm(t))m∈M.

2) Action for Each UAV in TPSG: At time slot t, UAV m ∈
M chooses an action aTPSG

m (t) ∈ ATPSG
m , where ATPSG

m is
the action set of UAV m in TPSG consisting of four possible
actions, i.e., moving forward, backward, left or right.

3) Reward of Each UAV in TPSG: The immediate reward
of UAV m ∈ M at time slot t is given by

RTPSG
m (t) =

κm(t)Taskcomp
m (t)

Ecomp
m (t) + Epro

m
, (24)

where the numerator indicates the size of tasks computed by
UAV m at time slot t, and the denominator represents the
energy consumption of UAV m at time slot t. The reward
function (24) can guide UAVs to provide better MEC services
for IoT devices.

4) State Transition Probabilities of UAVs in TPSG:
The state transition probability from state sTPSG to
state sTPSG′

by taking the joint action aTPSG(t) =
(aTPSG

1 (t), aTPSG
2 (t), ..., aTPSG

M (t)) can be expressed as

PTPSG
sTPSG,sTPSG′ (aTPSG(t)) = Pr(sTPSG(t + 1) =

sTPSG′ |sTPSG(t) = sTPSG,aTPSG(t)).
MDP for each UAV in ERSG: With the aim of de-

signing the optimal schedule of energy renewal for all
UAVs, the individual decision making problem for each
UAV m ∈ M in ERSG can be modelled as an MDP
(SERSG,AERSG

m ,RERSG
m ,PERSG).

1) Environment State for Each UAV in ERSG: The environ-
ment state sERSG(t) ∈ SERSG for each UAV m ∈ M in
ERSG at time slot t consists of all UAVs’ remaining energy
Eremain

m (t), m ∈ M and positions Um(t), m ∈ M, which
can be expressed as sERSG(t) = (Eremain

m (t),Um(t))m∈M.
2) Action for Each UAV in ERSG: At time slot t, UAV

m ∈ M chooses an action aERSG
m (t) ∈ AERSG

m , where
AERSG

m is the action set of UAV m in ERSG consisting of two
actions, i.e., deciding to return to the depot with κm(t) = 0,
and κm(t) = 1 otherwise.

3) Reward of Each UAV in ERSG: The immediate reward
of UAV m ∈ M at time slot t is given by

RERSG
m (t) =

{
−10, if constraint (13) is violated,
κm(t), otherwise. (25)

This reward function can prompt UAVs to hover over the target
region providing MEC services while avoiding the violation
of constraint (13).

The definition of state transition probabilities of UAVs in
ERSG PERSG is similar to that in TPSG and is omitted here
for conciseness.

MDP for each UAV in APSG: With the aim of producing
the optimal policy for updating the application placement
of all UAVs, the individual decision making problem for
each UAV m ∈ M in APSG can be defined as an MDP
(SAPSG,AAPSG

m ,RAPSG
m ,PAPSG).

1) Environment State for Each UAV in APSG: The envi-
ronment state sAPSG(t) ∈ SAPSG for each UAV m ∈ M
in APSG at time slot t consists of applications placed in all
UAVs wm(t),m ∈ M and the amount of the task requests
from IoT devices covered by UAV m before time slot t, i.e.,
θm(t) =

∑t
τ=1

∑
n∈Gm

vn(τ),m ∈ M, and thus we have
sAPSG(t) = (wm(t), θm(t))m∈M.

2) Action for Each UAV in APSG: At time slot t, UAV m ∈
M chooses an action aAPSG

m (t) ∈ AAPSG
m , where aAPSG

m (t)
signifies that UAV m selects Sm types of tasks from the total
C types of tasks.

3) Reward of Each UAV in APSG: The immediate reward
of UAV m ∈ M in APSG at time slot t is given by

RAPSG
m (t) =

e(t)

C

t∑
τ=1

∑
n∈Gm

vn(τ)wm(τ)⊤, (26)

where e(t) indicates the number of application types placed
in all UAVs at time slot t. This reward function would
guide UAVs to update more popular but diverse applications
according to the history of providing MEC services.

The definition of state transition probabilities of UAVs in
APSG PAPSG is similar to that in TPSG and is omitted here
for conciseness.
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Fig. 3. Illustration of TLRL approach for multiple UAVs trajectory planning,
energy renewal and application placement.

Based on the above three MDP formulations, we develop a
novel triple learner (i.e., trajectory learner, energy learner and
application learner) based reinforcement learning approach to
obtain equilibriums of these three coupled multi-agent stochas-
tic games. Specifically, each UAV learns the optimal Q value
of each state-action pair, and obtain the optimal local policies
for trajectory learner, energy learner, and application learner.
The key components of the three coupled stochastic games
for the multiple UAVs trajectory planning, energy renewal and
application placement studied in this paper is given in Fig. 3.
The energy learner learns to design the schedule of returning
to renew energy at each time slot. The application learner
learns to choose the strategy of updating application placement
at each time slot. The trajectory learner learns to choose the
direction to move along at each time slot. As shown in Fig.
3, the output of the energy learner determines whether a UAV
renew energy or not, which is regarded as one of the inputs
of the trajectory learner. The trajectory learner will select a
direction that the UAV moves along at each time slot only if
the UAV does not renew energy. If the UAV renews energy, the
application learner will update application placement, which
is regarded as one of the inputs of the trajectory learner. Thus,
due to the coupling, these three learners have to run in a back-
and-forth manner.

1) Settings for Trajectory Learner: The policy πTPSG
m :

STPSG −→ ATPSG
m of the trajectory learner in UAV

m, meaning a mapping from the environment state set to
the action set, signifies a probability distribution of actions
aTPSG
m ∈ ATPSG

m in a given state sTPSG. Particularly,
for UAV m in state sTPSG ∈ STPSG, the trajectory pol-
icy of the trajectory learner in UAV m can be presented
as πTPSG

m (sTPSG) = {πTPSG
m (sTPSG, aTPSG

m )|aTPSG
m ∈

ATPSG
m }, where πTPSG

m (sTPSG, aTPSG
m ) is the probability of

UAV m selecting action aTPSG
m in state sTPSG.

In Q-learning, the process of building trajectory policy
πTPSG
m is significantly affected by trajectory learner’s Q

function, and the Q function of the trajectory learner in UAV m
is the expected reward by executing action aTPSG

m ∈ ATPSG
m

in state sTPSG ∈ STPSG under the given policy πTPSG
m ,

which can be expressed by

QTPSG
m (sTPSG,aTPSG, πTPSG

m ) =
E(

∑∞
τ=0 σ

τRTPSG
m (t+ τ + 1)|sTPSG(t) = sTPSG,

a(t)TPSG = aTPSG, πTPSG
m ),

(27)
where σ is a constant discounted factor with σ ∈ [0, 1], and
the value of (27) are termed as action value, i.e., Q value. In
(27), we consider the long-term reward of UAV m, namely,
the sum of immediate reward at the current time slot.

At the beginning of time slot t, trajectory learner in UAV
m ∈ M selects an action aTPSG

m (t) ∈ ATPSG
m according to

its Q function. For striking a balance between exploration and
exploitation, in this work, we consider an ϵ-greedy exploration
strategy for the trajectory learner. Specifically, the trajectory
learner in UAV m ∈ M selects a random action aTPSG

m ∈
ATPSG

m in state sTPSG ∈ STPSG with probability ϵ and
selects the best action aTPSG∗

m with probability (1−ϵ), where
the best action has QTPSG

m (sTPSG,aTPSG∗, πTPSG
m ) ≥

QTPSG
m (sTPSG,aTPSG, πTPSG

m ), ∀aTPSG ∈ ATPSG with
aTPSG∗
m being the m-th element of aTPSG∗. Besides, if the

later described energy learner in UAV m selects to return to
the depot, the trajectory learner will not choose any action in
ATPSG

m . Then, the probability of selecting action aTPSG
m ∈

ATPSG
m in state sTPSG can be expressed by

πTPSG
m (sTPSG, aTPSG

m )

=

 0, if UAV m decides to return to the depot,
1− ϵ, if QTPSG

m (sTPSG, ·, ·) of aTPSG
m is the highest,

ϵ, otherwise.
(28)

In the Q value update step of Q-learning, the trajectory
learner in each UAV m ∈ M follows the update rule:

QTPSG
m (sTPSG,aTPSG, t+ 1) =

QTPSG
m (sTPSG,aTPSG, t) + βTPSG(RTPSG

m (t)+

σ max
aTPSG′∈ATPSG

QTPSG
m (sTPSG′

,aTPSG′
, t)

−QTPSG
m (sTPSG,aTPSG, t)),

(29)

where βTPSG denotes the learning rate in TPSG.

2) Settings for Energy Learner: Similar to the trajectory
learner, the policy of energy learner in UAV m ∈ M is
expressed as πERSG

m : SERSG −→ AERSG
m , and its definitions

are similar to the one in trajectory learner.

Here, the Q function of the energy learner in UAV m ∈ M
is the expected reward by executing action aERSG

m ∈ AERSG
m

in state sERSG ∈ SERSG under the given policy πERSG
m ,

which can be expressed by

QERSG
m (sERSG,aERSG, πERSG

m ) =
E(

∑∞
τ=0 σ

τRERSG
m (t+ τ + 1)|sERSG(t) = sERSG,

a(t)ERSG = aERSG, πERSG
m ).

(30)

The energy learner in UAV m ∈ M selects an action
aERSG
m ∈ AERSG

m (i.e., whether return to the depot or not)
also according the ϵ-greedy exploration strategy. Then, the
probability of selecting action aERSG

m ∈ AERSG
m in state
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sERSG can be expressed by

πERSG
m (sERSG, aERSG

m )

=

{
1− ϵ, if QERSG

m (sERSG, ·, ·) of aERSG
m is the highest,

ϵ, otherwise.
(31)

In the Q value update step of Q-learning, the energy learner
in each UAV m ∈ M follows the update rule:

QERSG
m (sERSG,aERSG, t+ 1) =

QERSG
m (sERSG,aERSG, t) + βERSG(RERSG

m (t)+

σ max
aERSG′∈AERSG

QERSG
m (sERSG′

,aERSG′
, t)

−QERSG
m (sERSG,aERSG, t)),

(32)

where βERSG denotes the learning rate in ERSG.
3) Settings for Application Learner: Similar to the trajectory

learner, the policy of application learner in UAV m ∈ M is
expressed as πAPSG

m : SAPSG −→ AAPSG
m .

Here, the Q function of the application learner in UAV
m ∈ M is the expected reward by executing action aAPSG

m ∈
AAPSG

m in state sAPSG ∈ SAPSG under the given policy
πAPSG
m , which can be expressed by

QAPSG
m (sAPSG,aAPSG, πAPSG

m ) =
E(

∑∞
τ=0 σ

τRAPSG
m (t+ τ + 1)|sAPSG(t) = sAPSG,

a(t)APSG = aAPSG, πAPSG
m ).

(33)
The application learner in UAV m ∈ M selects an action

aAPSG
m ∈ AAPSG

m also according the ϵ-greedy exploration
strategy. Then, the probability of selecting action aAPSG

m ∈
AAPSG

m in state sAPSG can be expressed by

πAPSG
m (sAPSG, aAPSG

m )

=

{
1− ϵ, if QAPSG

m (sAPSG, ·, ·) of aAPSG
m is the highest,

ϵ, otherwise.
(34)

In the Q value update step of Q-learning, the application
learner in each UAV m ∈ M follows the update rule:

QAPSG
m (sAPSG,aAPSG, t+ 1) =

QAPSG
m (sAPSG,aAPSG, t) + βAPSG(RAPSG

m (t)+

σ max
aAPSG′∈AAPSG

QAPSG
m (sAPSG′

,aAPSG′
, t)

−QAPSG
m (sAPSG,aAPSG, t)),

(35)

where βAPSG denotes the learning rate in APSG.
Each UAV runs three Q-learning algorithms to learn the

optimal Q values of each state-action pair. We obtain the
optimal local policies according to the trajectory learner, the
energy learner and the application learner. In summary, the
TLRL approach is detailed illustrated in Algorithm 1.

Initially, all UAVs in set M are chosen to initialize the Q
values of TPSG, APSG and ERSG, respectively, and the max-
imal iteration counter LOOP is set. In each iteration process,
the Q values of TPSG, APSG and ERSG are shared among
all UAVs. Specifically, each UAV m ∈ M decides whether
to return to the depot according to policy πERSG

m (sERSG, ·).
If UAV m returns to depot, it will update its application
placement according to policy πAPSG

m (sAPSG, ·). Otherwise,
it will choose a direction to fly in the target region according to
policy πTPSG

m (sTPSG, ·). Then, the rewards of TPSG, ERSG
and APSG are obtained according to (24), (25) and (26),

Algorithm 1: TLRL Approach
1 for m = 1 to M do
2 Initialize Q value QERSG

m (sERSG, aERSG
m ) = 0,

∀sERSG ∈ SERSG, aERSG
m ∈ AERSG

m and
QAPSG

m (sAPSG, aAPSG
m ) = 0, ∀sAPSG ∈ SAPSG,

aAPSG
m ∈ AAPSG

m and QTPSG
m (sTPSG, aTPSG

m ) = 0,
∀sTPSG ∈ STPSG, aTPSG

m ∈ ATPSG
m .

3 Set the maximal iteration counter LOOP and loop = 0.
4 for loop < LOOP do
5 Set t = 0.
6 for m = 1 to M do
7 Send QERSG

m , QAPSG
m and QTPSG

m to other UAVs.

8 while t ≤ T do
9 Observe state s.

10 for m = 1 to M do
11 UAV m selects aERSG

m according to
πERSG
m (sERSG, ·).

12 if UAV m returns to depot then
13 UAV m selects aAPSG

m according to
πAPSG
m (sAPSG, ·).

14 else
15 UAV m selects aTPSG

m according to
πTPSG
m (sTPSG, ·).

16 Obtain the rewards RERSG
m (sERSG,aERSG),

RAPSG
m (sAPSG,aAPSG

m ) and
RTPSG

m (sTPSG,aTPSG).
17 Update QERSG

m (sERSG,aERSG),
QAPSG

m (sAPSG,aAPSG
m ) and

QTPSG
m (sTPSG,aTPSG)

18 Send QERSG
m , QAPSG

m and QTPSG
m to other UAVs.

19 Set t = t+ 1.

20 Set loop = loop+ 1.

respectively. Finally, the action-values of TPSG, ERSG and
APSG are updated according to (29), (32) and (35), which are
shared among all UAVs.

The Convergence of TLRL Approach: As
recognized in [41], [42], when the limit of Q value
limt→∞QTPSG

m (sTPSG,aTPSG,t), the limit of Q value
limt→∞QERSG

m (sERSG,aERSG,t) and the limit of
Q value limt→∞QAPSG

m (sAPSG,aAPSG, t) converge
to the optimal Q value QTPSG∗

(sTPSG,aTPSG),
QERSG∗

(sERSG,aERSG) and QAPSG∗
(sAPSG,aAPSG)

respectively, the TLRL approach is converged.
Lemma 1: A random iterative process ∆t+1(x) = (1 −

λ(x))∆t(x) + ψ(x)Φt(x) converges to zeros with probability
1 under the following conditions:
1)The state space is finite.
2)
∑

t λ
t(x) = ∞,

∑
t ψ

t(x) = ∞,
∑

t(λ(x))
2 = ∞,∑

t(ψ(x))
2 = ∞ and E{ψ(x)|Λt} ≤ E{λ(x)|Λt}.

3)||E{Φt(x)|Λt}||W ≤ ζ||∆t||W , where ζ ∈ (0, 1).
4)V ar{Φt(x)|Λt} ≤ Z(1+ ||△t||W )2, where Z is a constant.

Proof: Please refer to Appendix A.
Theorem 1: The TLRL approach can achieve

P(limt→∞Q
TPSG
m (sTPSG,aTPSG, t) =

QTPSG∗
(sTPSG,aTPSG)) = 1,∀m ∈ M,

sTPSG ∈ STPSG,aTPSG ∈ ATPSG.
(36)
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TABLE III
SIMULATION PARAMETERS

Parameter Value Parameter Value

Num. of UAVs M 3 UAV altitude H 120m
Num. of IoT devices N 300 Bandwidth B 10MHz
Num. of task types C 10 Task size Dn 2Mbits

Hovering time thover 5s UAV velocity V 20m/s

UAV storage limit Sm 6 Coefficient ξ 10−18

Constant a 9.6117 Constant b 0.1581
Carrier frequency f 3GHz PSD of noise ϖ −174dBm/Hz
Length of a grid q 100m Target region 103m×103m
UAV computing capacity
fU
m

2Mbps UAV propulsion
power ptran

n

0.2W

Proof: Please refer to Appendix B.
Theorem 2: The TLRL approach can achieve

P(limt→∞Q
ERSG
m (sERSG,aERSG, t) =

QERSG∗
(sERSG,aERSG)) = 1,∀m ∈ M,

sERSG ∈ SERSG,aERSG ∈ AERSG.
(37)

Proof: The proof of this theorem is analogous to that of
theorem 1, and thus its detailed procedure is omitted.

Theorem 3: The TLRL approach can achieve

P(limt→∞Q
APSG
m (sAPSG,aAPSG, t) =

QAPSG∗
(sAPSG,aAPSG)) = 1,∀m ∈ M,

sAPSG ∈ SAPSG,aAPSG ∈ AAPSG.
(38)

Proof: The proof of this theorem is analogous to that of
theorem 1, and thus its detailed procedure is omitted.

The Complexity of TLRL Approach: Hereafter, we ana-
lyze the complexity of the proposed TLRL approach, which
is critical in multi-UAV assisted MEC. The complexity of the
proposed TLRL approach depends on the size of information
exchanged among UAVs when conducting trajectory planning,
energy renewal and application placement. In the proposed
TLRL approach, the information exchanged among UAVs
consists of the state of each UAV, and its size is determined
by the size of state space in trajectory learner, energy learner
and application learner, respectively. As mentioned above, the
size of the state space in trajectory learner is impacted by the
number of UAVs, the number of possible positions of each
UAV and the number of application types placed in each UAV.
The size of the state space of energy learner is impacted by
the number of UAVs. The size of the state space of application
learner is impacted by the number of UAVs and the amount
of application types of each UAV. Therefore, for given multi-
UAV assisted MEC, the complexity of the proposed TLRL
approach can keep constant with the increase of the density
of IoT devices in the target region, meaning that the proposed
TLRL approach is scalable.

VI. SIMULATION RESULTS

In this section, simulations are conducted to evaluate the
performance of the proposed TLRL approach. Table III lists
the values of all simulation parameters, and the propulsion
power model follows [40]. Similar settings have also been
employed in [36], [43]. Note that some parameters may vary
according to different evaluation scenarios. For comparison
purpose, we introduce an energy efficient oriented trajectory
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Fig. 4. Comparison on energy efficiency of all UAVs with different IoT device
transmission power under DMUCRL EOTP and the proposed TLRL.

planning (EOTP) algorithm and an existing algorithm called
decentralized multiple UAVs cooperative reinforcement learn-
ing (DMUCRL) [9] algorithm as benchmarks:
• DMUCRL [36]: DMUCRL is originally designed to

maximize the energy efficiency of UAVs in downlink
content sharing by controlling all UAVs to work collabo-
ratively based on a double Q-learning (where each UAV
contains a trajectory learner and an energy learner), while
it ignores the management of application placement in
UAVs.

• EOTP: EOTP determines the trajectories of all UAVs with
the aim of maximizing the energy efficiency but asks
UAVs to return to the depot for energy renewal only when
their batteries are exhausted, and EOTP does not enable
the update of application placement either.

Fig. 4 investigates the energy efficiency of all UAVs with
different IoT transmission power under DMUCRL, EOTP
and the proposed TLRL. It can be intuitively observed that
the energy efficiency of all UAVs first increases and then
becomes stable with the increase of IoT devices’ transmission
power. This is because with the larger transmission power,
IoT devices would offload more tasks to their associated
UAVs, and thereby increasing the amount of tasks processed
by UAVs. However, since the computing capacity of each
UAV is still limited, such increasing trend slows down as the
limit is approaching. More importantly, this figure shows that
the proposed TLRL outperforms both DMUCRL and EOTP.
The reason is that i) each UAV under EOTP returns to the
depot directly once its energy is exhausted neglecting the QoS
requirements of IoT devices; ii) each UAV’s applications are
fixed placed under DMUCRL, making it capable of serving
very limited IoT devices; and iii) our proposed TLRL well
addresses the shortcomings of DMUCRL and EOTP by jointly
optimizing all UAVs’ trajectory planning, energy renewal and
application placement.

Fig. 5 illustrates the energy efficiency of all UAVs with
different UAV hovering time under DMUCRL, EOTP and the
proposed TLRL. It can be observed that, the energy efficiency
of all UAVs first increases with the UAV hovering time, and
then decreases. This is because with the growth of UAV
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Fig. 5. Comparison on energy efficiency of all UAVs with different UAV
hovering time under DMUCRL EOTP and the proposed TLRL.
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Fig. 6. Comparison on energy efficiency of all UAVs with different number
of IoT devices under DMUCRL EOTP and the proposed TLRL.

hovering time, more offloaded tasks from IoT devices can be
computed by UAVs during hovering. However, when all tasks
have been completely processed by UAVs, they will become
idle and consume hovering energy over the target region until
hovering time expires. Additionally, it is also shown that the
proposed TLRL outperforms both DMUCRL and EOTP, and
the explanations for this are similar to those for Fig. 4.

Fig.6 examines the energy efficiency of all UAVs with
different number of IoT devices under DMUCRL, EOTP and
the proposed TLRL. It can be observed that, the energy effi-
ciency of all UAVs increases monotonically with the number
of IoT devices. This is because more offloading requests are
generated by IoT devices with the growth of the number of
IoT devices, resulting in more tasks are received and computed
by UAVs. Moreover, it is also shown that the proposed TLRL
outperforms DMUCRL and EOTP, and the explanations for
this are similar to those for Fig. 4.

Fig. 7 shows the energy efficiency of all UAVs with different
number of IoT devices under different grid size settings (i.e.,
q = 50 m, q = 100 m and q = 200 m). We can see that, for
grids size 50 m and 100 m, the energy efficiency of all UAVs
increases with the number of IoT devices. This is because
with the number of IoT devices increasing, more tasks will
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Fig. 7. Comparison on energy efficiency of all UAVs with different number
of IoT devices among grid size 50 m, 100 m and 200 m.
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Fig. 8. Comparison on energy efficiency of all UAVs with different storage
capacities of each UAV under DMUCRL EOTP and the proposed TLRL.

be offloaded to UAVs, so that more tasks may be processed,
resulting in the increase of energy efficiency. Besides, it is also
shown that the energy efficiency of all UAVs in grids size 50
m is less than in grids size 100 m and 200 m ones. This
is because the larger the grid, the more IoT devices covered
by UAVs. Additionally, It can be seen also that, the energy
efficiency of all UAVs increases firstly and then becomes stable
with the number of IoT devices increasing under grid size 200
m. This is because when UAVs cannot complete all received
computation tasks in the hovering time, the energy efficiency
of all UAVs will not increase with the number of task requests.

Fig. 8 illustrates the the energy efficiency of all UAVs with
different storage capacities of each UAV under DMUCRL,
EOTP and the proposed TLRL. It is shown that, the energy
efficiency of all UAVs increases monotonically with the stor-
age capacity of each UAV. The reason is that with the increase
of storage capacity, more types of applications can be placed
in each UAV, so that more tasks may be processed, resulting
in the increase of energy efficiency. Additionally, we can
also intuitively observe that the proposed TLRL outperforms
DMUCRL and EOTP when the storage capacity of each UAV
is less than 10 (the amount of task types C = 10), and
the explanation for this is that the application learner cannot
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Fig. 9. Comparison on energy efficiency of all UAVs with different storage
capacities of each UAV among grid size 50 m, 100 m and 200 m.
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Fig. 10. Comparison on energy efficiency of all UAVs with different
computing capacities of each UAV under DMUCRL EOTP and the proposed
TLRL.

influence the energy efficiency of all UAVs when each UAV
places all types of applications.

Fig. 9 shows all UAV’s energy efficiency with different
UAV storage capacities under different grid size settings.
Specifically, UAVs can adjust their downlink transmission
ranges so as to adjust the size q of grids they can cover. It can
be seen from Fig. 9 that the larger the grid size is, the higher
energy efficiency of all UAVs is obtained. This is because with
a larger grid size, more IoT devices are included in a grid,
and thereby each UAV can potentially process more offloaded
tasks. Besides, it is also shown that the energy efficiency of
all UAVs increases monotonically with the storage capacity
of each UAV. The reason is that with the increase of storage
capacity, more types of applications can be placed in each
UAV, so that more tasks may be processed, resulting in the
increase of energy efficiency.

Fig. 10 illustrates the energy efficiency of all UAVs with
different UAV computing capacities under DMUCRL, EOTP
and the proposed TLRL. It can be observed that, the energy
efficiency of all UAVs first slowly increases with the UAV
computing capacity, and then decreases. This is because with
the growth of UAV computing capacity, more offloaded tasks

from IoT devices can be computed by UAVs during hovering.
However, when all tasks have been completely processed by
UAVs, they will become idle and consume hovering energy
over the target region until hovering time expires. Moreover,
the energy consumption increases with the increase of UAV
computing capacity, resulting in that energy efficiency of
all UAVs decreases. Additionally, it is also shown that the
proposed TLRL outperforms both DMUCRL and EOTP, and
the explanations for this are similar to those for Fig. 4.

VII. CONCLUSION

In this paper, an energy efficient scheduling problem for
multi-UAV assisted MEC has been studied. With the aim
of maximizing the long-term energy-efficiency of all UAVs,
a joint optimization of UAVs’ trajectory planning, energy
renewal and application placement is formulated. By taking
the inherent cooperation and competition among UAVs, we
reformulate such optimization problem as three coupled multi-
agent stochastic games, and then propose a novel TLRL
approach for reaching equilibriums. Moreover, we analyze
the convergence and discuss the complexity of the proposed
TLRL approach. Simulation results show that, compared to
counterparts, the proposed TLRL approach can significantly
increase the energy efficiency of all UAVs.

APPENDIX

A. Proof of Lemma 1

The iteration process of TLRL approach for any state-
action pair (sTPSG,aTPSG) at time slot t can be denoted
by {QTPSG

m (sTPSG,aTPSG, t+1)}, which can be written as

Q
TPSG

(sTPSG,aTPSG, t)

= 1
M

∑M
m=1Q

TPSG
m (sTPSG,aTPSG, t),∀t ≥ 0.

(39)

For conciseness, the action and state in the bracket are
omitted in this proof, i.e., Qt

m = QTPSG
m (sTPSG,aTPSG, t),

Q
t
= Q

TPSG
(sTPSG,aTPSG, t), for the immediate reward

Rt
m = Rm(sTPSG,aTPSG, sTPSG′

, t), and the Q value of
next time slot Qt′

m = QTPSG
m (sTPSG′

,aTPSG′
, t). Thus, (29)

can be rewritten as

Qt+1
m = Qt

m

+βTPSG(Rt
m + σ max

aTPSG′∈ATPSG
Qt′

m −Qt
m). (40)

Furthermore, according to (39), we have

Q
t+1

= (1− λ)Q
t

+λ 1
M

∑M
m=1(Rt

m + σ max
aTPSG′∈ATPSG

Qt′

m). (41)

By subtracting Q∗ from both sides of (41), we can obtain

Q
t+1 −Q∗ = (1− λ)(Q

t −Q∗)

+λ( 1
M

∑M
m=1(Rt

m + σ max
aTPSG′∈ATPSG

Qt′

m)−Q∗). (42)

Note that the temporal difference algorithm in (42) can be
seen as a random process mentioned in Lemma 1 with △t+1 =

Q
t −Q∗, Φt = 1

M

∑M
m=1(Rt

m + σ max
aTPSG′∈ATPSG

Qt′

m)−Q∗

and λ = ψ. Hence, the condition 1) and 2) in Lemma 1 are
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satisfied. For satisfying the condition 3) and 4) in Lemma 1,
we give the proof of the temporal difference algorithm in (42).

According to Proposition 5.1 in [42], we know that F(·)
is a contraction mapping and Q∗ is the unique fixed point of
operator F(·), where F(·) is given by

F(Q) =
∑

sTPSG′∈STPSG

PTPSG
sTPSGsTPSG′ (aTPSG)

( 1
M

∑M
m=1 Rt

m(sTPSG,aTPSG, sTPSG′
)

+σ max
aTPSG′∈ATPSG

Q(sTPSG′
,aTPSG′

)).

(43)

Thus, we have F(Q∗) = Q∗ and

||F(Q1(s
TPSG,aTPSG))−F(Q2(s

TPSG,aTPSG))||∞
=||Q1(s

TPSG,aTPSG)−Q2(s
TPSG,aTPSG)||∞.

(44)

This further gives

E{Φt} =
∑

sTPSG′∈STPSG

PTPSG
sTPSGsTPSG′ (aTPSG)

( 1
M

∑M
m=1 Rt

m + σ max
aTPSG′∈ATPSG

Q
t′ −Q∗)

= F(Q
t
)−Q∗.

(45)

Then, we can obtain ||E{Φt}||∞ = ||F(Q
t
)−F(Q∗)||∞ ≤

σ||Qt −Q∗||∞ according to the properties of the contraction
mapping. Let || · ||∞ replace || · ||W in Lemma 1, the condition
3) in Lemma 1 is satisfied.

For the condition 4) in Lemma 1, we have

E{Φt} =
∑

sTPSG′∈STPSG

PTPSG
sTPSGsTPSG′ (aERSG)

( 1
M

∑M
m=1 Rm + σ max

aTPSG′∈ATPSG
Q

t′ −Q∗)

= F(Q
t
)−Q∗,

(46)

by which V ar{Φt} ≤ Z(1 + ||Qt − Q∗||2W ) can be
clearly proved for a constant Z due to the fact that
1
M

∑M
m=1 Rt

m is bounded [30]. Hence, the condition 4) in
Lemma 1 is satisfied. This completes the proof of Lemma
1, and thus we can obtain P(limt→∞Q(sTPSG,aTPSG) =
QTPSG∗

(sTPSG,aTPSG)) = 1.

B. Proof of Theorem 1
Similar to Lemma 1, the action and state in the bracket are

omitted in this proof.
Since the Q value of state-action pair (sTPSG,aTPSG)

is updated if and only if the joint action aTPSG occurs at
state sTPSG, {j},∀j ≥ 0 is denoted as the sequence of
updating state-action pair (sTPSG,aTPSG) for trajectory
learner. Hence, we have

Qj+1 = (YM − βTPSGYM )Qjβ(Rj +U j), (47)

where Qj+1 = (Qj+1
1 , ..., Qj+1

m )⊤, and YM is the M ×M
identity matrix. In (47), we can obtain Rj = (Rj

1, ...,R
j
M )⊤

and U j = (σ max
aTPSG′∈ATPSG

Qj′

1 , ..., σ max
aTPSG′∈ATPSG

Qj′

M )⊤.

Furthermore, we can obtain

Qj+1 −Q
j+1

=

(YM − βTPSGYM )(Qj −Q
j
) + βTPSG(R̂j + Û j),

(48)

where 1M denotes the M -dimensional column vectors of
ones, and then we can obtain Q

j
= Q

j1M . Additionally,
we can also obtain R̂j = (YM − ( 1

M )1M (1M )⊤)Rj and
Û j = (YM − ( 1

M )1M (1M )⊤)U j . Hence, we have

||Qj+1 −Q
j+1|| = ||(YM − βTPSGYM )Qj

−Q
j+1||+ ||βTPSG(Rj +U j)||

≤ ||YM (Qj −Q
j
)||

+βTPSG||(Qj −Q
j
)||

+βTPSG||(R̂j − Û j)||
(ϱ)

≤ (1−Xj + βTPSG)||Qj −Q
j ||

+βTPSG(||R̂j ||+ ||Û j ||),
(49)

where (ϱ) follows the Lemma 4.4 in [44] and Xj → 0 as
j → ∞ with Xj ∈ [0, 1]. Since βTPSG → 0 as j → ∞, it can
be obtained that (1 −Xj + βTPSG) → 0 as j → ∞. Hence,
we can obtain that P(limt→∞||Qj −Q

j || = 0) = 1. Namely,

P(limt→∞Q
E
m(sTPSG,aTPSG) =Q(sTPSG,aTPSG))

= 1,∀m ∈ M, sTPSG ∈ STPSG,aTPSG ∈ ATPSG.
(50)

Additionally, we have P(limt→∞Q(sTPSG,aTPSG) =
QTPSG∗

(sTPSG,aTPSG)) = 1 according to Lemma 1.
Therefore, we can obtain P(limt→∞Q(sTPSG,aTPSG) =
QTPSG∗

(sTPSG,aTPSG))=1, and this completes the proof
of Theorem 1.
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